
Named Arguments as Records
(TFP’22 draft)

Yaozhu Sun and Bruno C. d. S. Oliveira

The University of Hong Kong, China
{yzsun,bruno}@cs.hku.hk

Abstract. Named arguments are commonly supported in mainstream
programming languages. However, there has been little work on formal-
izing the design of named arguments.
This paper shows a minimal calculus that encodes named arguments
as a form of records. Our design is based on a variant of record types,
which allows optional fields and introduces two alternative notions of
open-bindings and failable projections. With this design, we are able to
model an expressive form of named arguments, which supports optional
arguments as well. In our design, named arguments are commutative, and
they are distinct from positional arguments. We present an extension to
λ<: and discuss its semantics. Our main goal is to obtain a calculus that
is as simple as possible but still captures most of the desirable features
for named arguments.

Keywords: Named arguments · Optional arguments · Record types

1 Introduction

The λ-calculus, introduced by Alonzo Church, shows us how to model com-
putation solely with function abstraction and application. In the λ-calculus, a
function only has one parameter and can only be applied to one argument.
Many programming languages in the ML family inherit this feature. If we want
a function with multiple arguments in those languages, we need to turn it into
a sequence of functions, each with a single argument, which is called currying.
Currying brings brevity to functional programming and naturally allows partial
application, but it also limits the flexibility of function application. For example,
we cannot pass arguments in a different order nor omit some of them by provid-
ing default values. Both demands are not rare at all in practical programming
and can be met in a language that supports named arguments.

Named arguments are commonly supported in mainstream programming lan-
guages, such as C#, Python, Ruby, and Scala, just to name a few. The earliest
instance, to the best of our knowledge, is Smalltalk, where every argument must
be associated with a keyword. The syntax of modern languages is usually less
rigid, so programmers can choose whether to attach keywords to arguments or
not. More specifically, there are two ways to handle named arguments. The more

2 Y. Sun and B.C.d.S. Oliveira

def exp(x, base=math.e):
return base ** x

exp(10) #= exp(x=10) = 22026
exp(base=2, x=10) #= 1024

(a) The Python way

def exp(x:, base: Math::E)
base ** x

end
exp(10) # ArgumentError!
exp(base: 2, x: 10) #= 1024

(b) The Ruby way

Fig. 1: Named arguments in two different ways

common way, shown in Fig. 1a, is to make variable names in the function defini-
tion as optional keywords. Thus every argument can be passed with or without
keywords. As shown in the Python code, exp(10) is equivalent to exp(x=10).
To reconcile the two forms, a restriction is imposed that all positional arguments
have to appear to the left of named ones. The other way, shown in Fig. 1b, is
to strictly distinguish named arguments from positional ones. In Ruby, a named
parameter should end with a colon even if it does not have a default value. There-
fore, they are distinct from positional parameters, and their keywords cannot be
omitted in a function call. In fact, these named arguments are desugared to a
hash map.

Although named arguments are ubiquitous in practical programming, they do
not attract enough attention in the research of programming languages. Among
the few related papers, the work by Garrigue et al. [1,3,6] formalizes a label-
selective λ-calculus and eventually applies it to OCaml [5]. We will discuss it
in detail in Section 2.1. Another work by Rytz and Odersky [10] discusses the
design of named and optional arguments in Scala but does not formalize it. In
Haskell, the paradigm of named arguments as records is folklore, which will be
elaborated in Section 2.2. From previous work in the literature, we identify four
design choices related to named arguments:

1. Commutativity : whether the order of arguments can be different from that
in the original definition.

2. Optionality : whether some arguments can be optional if their default values
are given.

3. Distinctness: whether named arguments are distinct from positional argu-
ments.

4. Currying : whether a function that takes more than one argument is always
converted into a chain of functions that each take a single argument.

The first two properties hold for most mainstream programming languages
that support named arguments. Commutativity and optionality are so useful
that they should not be compromised. The third design is endorsed by Ruby and
Racket, and we find it more intuitive than mixing two forms of arguments, so we
advocate distinguishing them. In other words, we have to add argument keywords
in the function application as long as they defined to be named. The last one,
currying, is important for functional languages. OCaml manages to integrate

Named Arguments as Records 3

currying with commutativity, at the cost of introducing a very complicated core
calculus. We agree that currying is very useful when we use normal positional
arguments, but we argue that currying can be temporarily dropped when we use
named arguments because the most common use case for named arguments is
to represent a whole chunk of parameters like settings.

In this paper, we propose a new approach by desugaring named arguments
into records in a minimal core calculus. The approach is simpler than the OCaml
way and avoids some drawbacks of the design pattern used in Haskell. To some
degree, we absorb the design pattern into the language support. Our approach
supports commutativity and optionality but does not support currying when
using named arguments. This is a trade-off between simplicity and expressive-
ness. Nevertheless, users have the right to choose either to use named arguments
without currying or to use positional arguments with currying.

To make it clear, our goal is not to find a solution that is as powerful as
OCaml has, but to propose a core calculus that is as simple as possible but
still supports named and optional arguments via desugaring. We believe such
a simple calculus leads to less feature interaction when integrated with other
languages.

Our source language benefits from named arguments in two aspects. On the
one hand, argument keywords serve as extra documentation at the language
level. We do not need to open the code in an IDE and look up the definition
of a function to figure out for what its arguments are used. This design is more
friendly to those users who read code literally. Moreover, keywords are part
of a function type, so we can know more from the type information without
referring to ad-hoc documentation. On the other hand, named arguments lay
the foundation for supporting commutativity and optionality. Without argument
keywords, it is unclear how to naturally support these useful features.

In summary, the contributions of this paper are:

– We document the folklore paradigm of named arguments as records in Haskell.
– We demonstrate how a functional language with named and optional argu-

ments can be desugared to a minimal core calculus.
– We propose two core calculi supporting optional fields in record types, which

extend λ<: with open-bindings and failable projections respectively.
– In order to give a correct small-step operational semantics to open-bindings,

we explore environment-based evaluation with closures instead of using tex-
tual substitution.

2 Named Arguments in Existing Functional Languages

In this section, we review the techniques used for named arguments in two exist-
ing functional languages, namely OCaml and Haskell. We will explain why their
approaches still have some drawbacks.

4 Y. Sun and B.C.d.S. Oliveira

2.1 OCaml

Originally, just like other languages in the ML family, OCaml did not support
named arguments. Later, Garrigue et al. [1,3,6] conducted research on the label-
selective λ-calculus and implemented it in OLabl [4]. OLabl extended OCaml
with labeled and optional arguments, among others. All features of OLabl were
merged into OCaml 3, though with subtle differences [5].

Here is an example of the exponential function defined in a labeled style:

let exp ?(base = 2.71828) x = base ** x
(* val exp : ?base:float → float → float = <fun> *)
exp 10.0 (*= 22026. *)
exp 10.0 ~base:2.0 (*= 1024. *)
(exp 10.0) ~base:2.0 (* TypeError! *)

In the definition of exp, base is an optional labeled parameter while x is a normal
positional parameter. We cannot change x into a second labeled parameter here
because OCaml imposes a restriction that there must be a positional parameter
after all optional parameters. This restriction is at the heart of how OCaml re-
solves the ambiguity introduced by currying. For example, consider the function
application exp 10.0. Is it a partially applied function or a fully applied one
using the default value of base? The presence of the positional argument (x in
this example) is used to decide whether such a function has been fully applied.
So exp 10.0 is considered to be a full application because x is already given.
However, this feature may confuse users since (exp 10.0) ~base:2.0 will raise
a type error but exp 10.0 ~base:2.0 will not. Currying does not seem to hold
in such a situation.

In OCaml, optional arguments are internally implemented as option types.
Here is an equivalent definition for exp, together with two examples of the trans-
formation of optional arguments:

let exp ?base x =
let base = match base with None → 2.71828 | Some b → b in
base ** x

(* val exp : ?base:float → float → float = <fun> *)
exp 10.0 (*> exp 10.0 ~base:None *)
exp 10.0 ~base:2.0 (*> exp 10.0 ~base:(Some 2.0) *)

This encoding is quite natural, but it assumes option types to be built in.
Unfortunately, there are plenty of languages that do not regard option as a
built-in type, especially in those languages that do not support algebraic data
types.

In short, the OCaml way cannot scale smoothly. OCaml has a very powerful
label-selective core calculus that reconciles commutativity and currying, but it is
quite complicated, hindering its integration with other languages. The assump-
tion of option types makes the situation even worse. In contrast to OCaml, we
want a minimal core calculus that supports named and optional arguments via
desugaring.

Named Arguments as Records 5

data Settings = Settings
{ settingsPort :: Port
, settingsHost :: HostPreference
, settingsTimeOut :: Int
, ...
}

(a) The record type containing settings

defaultSettings = Settings
{ settingsPort = 3000
, settingsHost = "*4"
, settingsTimeout = 30
, ...
}

(b) Default values

runSettings :: Settings → Application → IO ()
runSettings = ...

main :: IO ()
main = runSettings settings app

where settings = defaultSettings { settingsPort = 4000
, settingsHost = "*6" }

(c) Update some settings before running a server application

Fig. 2: Named arguments as records in Haskell

2.2 Haskell

Unlike OCaml, Haskell does not support named arguments natively. However,
the paradigm of named arguments as records has long existed in the Haskell com-
munity. Although we have to uncurry a function to have all parameters labeled
in a record, it is clearer and more human-readable, especially when different pa-
rameters have the same type. For example, in the web server library warp [11],
various server settings are bundled in the data type Settings, as shown in Fig. 2.
It is obvious how named arguments correspond to record fields, but it needs some
thought on how to encode default values for optional arguments. The simplest
approach, also used by warp, is to define a record defaultSettings. Users can
update whatever fields they want to change while keeping others.

Such an approach works fine here but still has two drawbacks. The first issue
is the dependency on defaultSettings. It is awkward for users to look for a
record containing particular default values, especially when there are quite a few
similar records in a library. A better solution is to change the parameter from
concrete Settings to a function that updates Settings:

runSettings’ :: (Settings → Settings) → Application → IO ()
runSettings’ update = runSettings (update defaultSettings)

main :: IO ()
main = runSettings’ update app

where update settings = settings { settingsPort = 4000
, settingsHost = "*6" }

6 Y. Sun and B.C.d.S. Oliveira

With the new interface, users do not need to look for default values anymore, and
the use of runSettings’ is fully decoupled from defaultSettings. However,
this design still has the second drawback: all arguments are optional. Sometimes
we do not want to provide any default value for some argument, settingsPort
for example, and users are required to fill it in. A workaround employed by
SqlBackend in the library persistent [7] is to have another function that takes
required arguments and supplements default values for optional arguments:

{-# language DuplicateRecordFields, RecordWildCards #-}

data ReqSettings = ReqSettings { settingsPort :: Port }

mkSettings :: ReqSettings → Settings
mkSettings ReqSettings {..} =

Settings { settingsHost = "*4", settingsTimeout = 30, .. }

Although the new mkSettings function solves the second issue, there is a re-
gression concerning the first issue: users have to look for mk* functions now.
Fortunately, we can harmonize the essence of both design patterns to develop a
third approach:

{-# language DuplicateRecordFields, RecordWildCards #-}

data OptSettings = OptSettings { settingsHost :: HostPreference
, settingsTimeOut :: Int }

runSettings’’ :: (OptSettings → Settings) → Application → IO ()
runSettings’’ update = runSettings (update defaultSettings)

where defaultSettings = OptSettings { settingsHost = "*4"
, settingsTimeout = 30 }

main :: IO ()
main = runSettings’’ update app

where update OptSettings {..} =
Settings { settingsPort = 4000, .. }

{ settingsHost = "*6" }

This last approach is probably the best practice at the moment in Haskell,
though it is already complicated for novices and requires two GHC language
extensions. Of course, there could be other approaches we did not mention to
encoding named and optional arguments in Haskell. Users may get users confused
about the various available design patterns. This is partly due to the lack of the
language support for named arguments. We believe it is better for a functional
language to provide some standard syntax instead.

Named Arguments as Records 7

3 Encoding Named Arguments as Records

In this section, we demonstrate our approach to encoding named and optional
arguments. Two possible ways of desugaring are presented, both of which are
based on a minimal extension of λ<:. The first one adds open-bindings while the
second one adds failable projections. A new kind of record type with optional
fields is also needed for type safety.

3.1 Desugaring with Open-Bindings

Let us revisit the example of the exponential function. This time, exp is defined
and applied using our source language in ML-like syntax:

exp { x: Double; base: Double = 2.71828 } = base ** x

exp { x = 10.0 } --> 22026.
exp { x = 10.0; base = 2.0 } --> 1024.
exp { base = 2.0; x = 10.0 } --> 1024.

In the definition of exp, we provide the default value for base. When applying
exp, we can choose whether to pass base or not as long as the required argument
x is present. We can freely swap the order of x and base while keeping the
meaning of each argument clear.

Desugared code. How does it work? Actually, we desugar the previous definition
of exp to a core expression of this form:

exp = λargs: { x: Double }. let base = 2.71828 in
open args in -- let x = 10.0 in let base = 2.0 in
base ** x ----------------- shadowing!

The first thing to note is that the type of args does not contain any optional
argument. Here, we leverage width subtyping between record types to accept
additional arguments. That is why the record type only contains required argu-
ments like x.

In the desugared definition, the most interesting part is the open-binding on
the second line. It will dynamically convert each field within the record into a
corresponding let-binding. While optional arguments are already bound to their
default values, the new values in the argument record, if provided by users,
will shadow the previous let-bindings. Note that we cannot statically convert
open-bindings to let-bindings because we cannot know what optional fields are
available in the record args until run time. In other words, open is a dynamic
operation that inspects the evaluated value of the argument record.

A stricter open. Although our desugaring works fine so far, one may have a
concern about accidental shadowing caused by open-bindings. For example, if
a user applies exp to { x = 10.0; foo = "bar" }, the field foo may cause
accidental shadowing if this variable has already been defined. To avoid such an

8 Y. Sun and B.C.d.S. Oliveira

embarrassing situation, we propose a stricter version of open with a permitted
label set. The given labels limit the range of fields that can be opened. With this
version of open, the desugared code can be rewritten like this:

exp = λargs: { x: Double }. let base = 2.71828 in
open base, x of args in
base ** x

However, this stricter version is still unsatisfying in terms of type safety. We will
revisit open-bindings in Section 3.3.

3.2 Desugaring with Failable Projections

In the first way of desugaring, we said that open-bindings cannot be statically
converted to let-bindings because the presence of optional fields is unknown
until run time. Thus we cannot guarantee that record projections are always
safe. But what if we allow failable projections? In OCaml, option types are
used to represent such a failable result. As we have argued, we want to keep
the core calculus as simple as possible, so we choose to provide default values
for failable projections instead. It can be regarded as eliminating option values
with the Option.value function immediately. (Option.value is equivalent to
fromMaybe in Haskell.)

Desugared code. With failable projections, the previous definition of exp is de-
sugared into a core expression of this form:

exp = λargs: { x: Double }.
let base = args.base ? 2.71828 in -- failable projection
let x = args.x in -- definitely safe projection
base ** x

The syntax of failable projection is e1.` ? e2. If a field of the form {` = v} is
present in e1 then v is returned, otherise use e2 as a default. Note that the second
projection is definitely safe because the type of args ensures that x is present.

Lazy evaluation. In most situations, failable projections and the stricter version
of open-bindings are equally valid. But one thing to note is that failable pro-
jections have better compatibility with lazy evaluation. This issue is about the
strict evaluation of e1 in the expression open e1 in e2. For example, consider the
following code:

const = λargs: Top. let foo = 0 in open args in 48
const { foo = undefined }

Here, we assume undefined to be a stuck term. The application of const is
certainly stuck since the argument is strictly evaluated. This is not a bug but a
feature in the call-by-value λ-calculus. To avoid this, we can employ call-by-name
evaluation, but our open-bindings do not have a lazy version. The evaluation
will still be stuck when evaluating args in the expression open args in

Named Arguments as Records 9

Therefore, we have to choose an alternative way using failable projections and
lazy let-bindings:

const = λargs: Top. let foo = args.foo ? 0 in 48
const { foo = undefined }

Since foo is unused, the expression args.foo ? 0 is never evaluated. Thus the
code terminates in a call-by-name semantics.

3.3 Toward Type Safety

There is still a serious problem in our approach: neither open-bindings nor fail-
able projections are type-safe! To address this problem, we need to provide the
type system with more information about optional fields. The way of desugaring
should be changed a bit:

exp : { x: Double; base: Double = 2.71828 } = ...
-- will be desugared to:
exp = λargs: { x: Double | base?: Double }. ...

In the type of args in the desugared code, the optional argument base is ap-
pended after a vertical bar. The question mark after the label is used to visually
distinguish optional fields from required ones. With the extra type information,
we can do more checks to ensure type safety.

Open-bindings. Even with the stricter version of open, we could not guarantee
that every opened argument has the same type as its default value. After we
include optional fields in the parameter type, the desugared code is now:

exp = λargs: { x: Double | base?: Double }.
let base = 2.71828 in open args in base ** x

Since we statically know the names and types of the optional arguments from the
type of args, we can check if they are bound with default values of appropriate
types before args are opened. At call sites, optional arguments are also checked
against the parameter type to ensure that they have the correct types. Further-
more, passing undeclared arguments is forbidden to avoid accidental shadowing.

Failable projections. A similar issue can be found in the approach with failable
projections: we cannot guarantee that the value we obtain from a projection has
the same type as the default value. But with the new way, the desugared code
is now:

exp = λargs: { x: Double | base?: Double }.
let base = args.base ? 2.71828 in let x = args.x in base ** x

When type checking args.base ? 2.71828, we can statically know the potential
type of the base field. It is easy to make sure the failable projection is type-safe
by comparing that type and the type of the default value.

10 Y. Sun and B.C.d.S. Oliveira

4 Formalization of Core Calculi

After the informal introduction of language constructs in the core calculi, we go
deep into the formalization in this section. We formalize failable projections and
open-bindings in λproj and λopen, respectively. As demonstrated before, either
of the two calculi is enough to encode named arguments. Furthermore, a special
record type with extra information about optional fields is added to keep both
calculi type-safe.

4.1 Syntax and Semantics of λproj

The syntax of λproj is presented in Fig. 3. The λ<: components are standard
as we follow the formalization in Software Foundations [8], except that we use
bidirectional typing [2] to make typing rules clear and evaluation contexts [9] to
simplify evaluation rules. Therefore, we focus on the novel parts about failable
projections and record types with optional fields. It is worth noting that all of our
new rules are modularly added, which means no existing rules need modification.

Subtyping. The subtyping rules are inherited from λ<: intact, including ordinary
record subtyping (width, depth, and permutation subtyping). Note that there
is no subtyping relation with respect to the record types with optional fields.
Consequently, these types will never go through the rule of subsumption.

Typing. Following the convention of bidirectional typing, we use Γ ` e ⇒ A to
denote type inference and Γ ` e ⇐ A to denote type checking. There is no rule
that infers an expression to be a record type with optional fields, so such a type
can only occur in parameters that are annotated by users. When a function is
applied to optional arguments, the argument is checked against the parameter
type, that is, a record type with optional fields. Such a check is handled by
T-OptRcd in Fig. 4. In essence, optional fields add a lower bound to a record

Types A,B ::= > | A→ B | {` : A} | {`i : Ai | `j? : Aj}

Expressions e ::= x | λx : A. e | e1 e2 | let x = e1 in e2 |

{` = e} | e.` | e1.` ? e2
Values v ::= λx : A. e | {` = v}
Evaluation Contexts E ::= � | E e | v E | let x = E in e |

{`i = vi; ` = E; `j = ej} | E.` | E.` ? e
Typing Environments Γ ::= · | Γ, e : A

Fig. 3: Syntax of λproj

Named Arguments as Records 11

T-OptRcd
Γ ` e⇒ A {`i : Ai; `j : Aj} <: A <: {`i : Ai}

Γ ` e⇐ {`i : Ai | `j? : Aj}

T-OptProj
Γ ` e1 ⇒ {`i : Ai | `j? : Aj ; `? : A; `j′? : Aj′} Γ ` e2 ⇒ A

Γ ` e1.` ? e2 ⇒ A

Fig. 4: Typing rules of optional fields and failable projections

E-ProjSome
{`i = vi; ` = v; `j = vj}.` ? e2 −→ v

E-ProjNone
` /∈ {`i}

{`i = vi}.` ? e2 −→ e2

Fig. 5: Evaluation rules of failable projections

type. The record type {`i : Ai} without optional fields still acts as the upper
bound; meanwhile, we construct another ordinary record type {`i : Ai; `j : Aj}
consisting of both optional and required fields as the lower bound. The inferred
type of a record should lie between the two bounds. The typing rule of failable
projections is also shown in Fig. 4. T-OptProj checks if the optional field with
label ` has the same type as e2. If not, type checking fails.

Operational semantics. As shown in Fig. 5, there are two evaluation rules about
failable projections: E-ProjSome succeeds in finding the field {` = v} and steps
to v, while E-ProjNone steps to e2 since ` is absent in the record.

4.2 Syntax and Semantics of λopen

The syntax of λopen is presented in Fig. 6. The components about optional fields
are omitted since they are the same as those introduced in λproj. The extension
of open-bindings is more difficult than failable projections because we have to
employ a different operational semantics. The root cause is that open-bindings
are incompatible with textual substitution. Since a substitution eagerly replaces
all occurrences of a variable by traversing the syntax tree, open-bindings cannot
foresee whether a substitution is shadowed by the labels to be opened before the
record is evaluated. For example, consider such an expression:

let x = 1 in let args = { x = 2 } in open args in x

It evaluates to 1 if we evaluate let-bindings with substitution. The substitution of
let x = 1 is not shadowed by open args because the record args has not been
evaluated and the labels it contains are unknown at this moment. Therefore, we
abandon substitution and propose a environment-based operational semantics
with closures.

12 Y. Sun and B.C.d.S. Oliveira

Expressions e ::= x | λx : A. e | e1 e2 | {` = e} | e.` |

let x = e1 in e2 | open e1 in e2 | 〈∆ | e〉

Values v ::= 〈∆ | λx : A. e〉 | {` = v}

Evaluation Contexts E ::= � | E e | v E | {`i = vi; ` = E; `j = ej} | E.` |

let x = E in e | open e1 in e2

Valuation Environments ∆ ::= · | ∆, x 7→ v

Fig. 6: Syntax of λopen

E-Var
x 7→ v ∈ ∆
∆ ` x −→ v

E-Abs
∆ ` λx : A. e −→ 〈∆ | λx : A. e〉

E-App
∆ ` 〈∆′ | λx : A. e〉 v −→ 〈∆′, x 7→ v | e〉

E-Proj
∆ ` {`i = vi; ` = v; `j = vj}.` −→ v

E-Let
∆ ` let x = v1 in e2 −→ 〈∆, x 7→ v1 | e2〉

E-Open
∆ ` open {` = v} in e −→ let ` = v in e

E-Closure
∆′ ` e −→ e′

∆ ` 〈∆′ | e〉 −→ 〈∆′ | e′〉

E-ClosureV
∆ ` 〈∆′ | v〉 −→ v

E-Context
∆ ` e −→ e′

∆ ` E[e] −→ E[e′]

Fig. 7: Environment-based evaluation rules of λopen

T-Open
Γ, `j : Aj ` e1 ⇒ {`i : Ai | `j? : Aj} Γ, `j : Aj , `i : Ai ` e2 ⇒ B

Γ, `j : Aj ` open e1 in e2 ⇒ B

Fig. 8: The typing rule of open-bindings

Named Arguments as Records 13

Operational semantics. As shown in Fig. 7, a valuation environment ∆, which
binds variable names to their corresponding values, is added to each evaluation
rule. The expression 〈∆ | e〉 saves an environment inside so that evaluation can
later resume with a saved environment, among which 〈∆|λx : A. e〉 is well knwon
as a function closure. Briefly speaking, closures are used to ensure lexical scoping.
The extension of open-bindings is rather simple: E-Open converts open-bindings
to let-bindings depending on the evaluated result of the record.

Typing. The typing rule of open-bindings in Fig. 8 may need some explaining.
T-Open first figures out the optional fields from the type of e1 and checks if
these names are already in the typing environment. This is because we assume
that all optional arguments have their default values defined in advance. If the
requirement is met, we go on to calculate the type of e2 with the type information
of all fields appended to the environment. By the way, the check of an open-
binding degenerate into something like a check of multiple let-bindings if there
is no optional fields.

Remarks. Overall, we prefer λproj to λopen because we want to keep the exten-
sion to λ<: as simple as possible. Although the operational semantics of λopen
is unusual, the implementation of open-bindings should not be harder than fail-
able projections since we seldom use textual substitution owing to inefficiency.
Instead, a practical implementation is probably more close to our closure-based
operational semantics. Moreover, an open-binding itself is a useful language con-
struct, similar to the open directive in the ML module system or record wildcards
in Haskell. It is also interesting to us that a seemingly concise design can finally
lead to a relatively sophisticated formalization.

5 Conclusion

Named and optional arguments are widely supported in object-oriented pro-
gramming languages but are hardly formalized. Garrigue et al. formalized a
label-selective λ-calculus for OCaml that combines commutativity and currying,
but it is non-trivial to be integrated with other sophisticated λ-calculi. OCaml
goes to the extreme of pursuing fancy features, while Haskell goes to the other
extreme of lacking native support for named arguments. It is well known in
Haskell that named arguments can be encoded as records, but it requires a lot of
boilerplate code to support both required and optional arguments. In this paper,
we presented a minimal extension to λ<: that serves as a type-safe core calculus.
Based on two alternative ways of desugaring, named and optional arguments can
be encoded as records.

Although we keep the calculus as simple and modular as possible, it is impos-
sible to avoid every potential conflict caused by feature interaction. If a language
is simply incompatible with subtyping, for an extreme example, our approach
does not work. Nevertheless, we believe that our approach works in most sit-
uations. We hope that functional language designers who are concerned about
named arguments can benefit from this paper.

14 Y. Sun and B.C.d.S. Oliveira

Future work. We plan to prove the type soundness of λproj and λopen using Coq
in the near future. Moreover, it is worth investigating how to adapt our approach
for a record calculus that uses row polymorphism rather than subtyping.

Acknowledgments. This work has been sponsored by the Hong Kong Research
Grant Council project numbers 17209519, 17209520, and 17209821.

References

1. Aït-Kaci, H., Garrigue, J.: Label-selective lambda-calculus: syntax and confluence.
Theor. Comput. Sci. 151(2) (1995)

2. Dunfield, J., Krishnaswami, N.: Bidirectional typing. ACM Comput. Surv. 54(5)
(2021)

3. Furuse, J.P., Garrigue, J.: A label-selective lambda-calculus with optional argu-
ments and its compilation method. Tech. rep., Kyoto University (1995)

4. Garrigue, J.: Objective Label trilogy, http://wwwfun.kurims.kyoto-u.ac.jp/
soft/olabl/

5. Garrigue, J.: Labeled and optional arguments for Objective Caml. In: JSSST SIG-
PPL (2001)

6. Garrigue, J., Aït-Kaci, H.: The typed polymorphic label-selective lambda-calculus.
In: POPL (1994)

7. Parsons, M.: Persistent: type-safe, multi-backend data serialization, https://
hackage.haskell.org/package/persistent

8. Pierce, B.C., et al.: Programming Language Foundations, Software Foundations,
vol. 2. https://softwarefoundations.cis.upenn.edu/plf-current/

9. Plotkin, G.D.: Call-by-name, call-by-value and the lambda-calculus. Theor. Com-
put. Sci. 1(2) (1975)

10. Rytz, L., Odersky, M.: Named and default arguments for polymorphic object-
oriented languages. In: SAC (2010)

11. Snoyman, M.: Warp: a fast, light-weight web server for WAI applications, https:
//hackage.haskell.org/package/warp

http://wwwfun.kurims.kyoto-u.ac.jp/soft/olabl/
http://wwwfun.kurims.kyoto-u.ac.jp/soft/olabl/
https://hackage.haskell.org/package/persistent
https://hackage.haskell.org/package/persistent
https://softwarefoundations.cis.upenn.edu/plf-current/
https://hackage.haskell.org/package/warp
https://hackage.haskell.org/package/warp

	Named Arguments as Records
	Introduction
	Named Arguments in Existing Functional Languages
	OCaml
	Haskell

	Encoding Named Arguments as Records
	Desugaring with Open-Bindings
	Desugaring with Failable Projections
	Toward Type Safety

	Formalization of Core Calculi
	Syntax and Semantics of Lambda-Proj
	Syntax and Semantics of Lambda-Open

	Conclusion

