Type-Safe Compilation of Dynamic Inheritance via Merging

YAOZHU SUN, The University of Hong Kong, China and National Institute of Informatics, Japan
XUEJING HUANG, The University of Hong Kong, China and IRIF, Université Paris Cité, France
BRUNO C. D. S. OLIVEIRA, The University of Hong Kong, China

Inheritance is a key concept in many programming languages. Dynamically typed languages, such as Java-
Script, often support powerful forms of dynamic inheritance. However, dynamic inheritance poses significant
challenges for static typing. Most statically typed languages only provide static inheritance to achieve type
safety at the cost of flexibility.

This paper presents a compiler for the CP language, which is a statically typed language that supports
dynamic inheritance via a merge operator and also has an expressive form of parametric polymorphism. The
merge operator enables a form of multiple inheritance and first-class classes, as well as virtual classes and
family polymorphism. With these features, CP allows the development of highly modular and loosely coupled
components. However, the efficient compilation of CP code is non-trivial, especially if separate compilation
is desired. In particular, subtyping in CP is coercive for type safety, which poses significant challenges in
obtaining an efficient compilation scheme. We show how CP is compilable to languages supporting extensible
records or similar data structures, where record labels are generated from types for efficient lookup on merges.
The main ideas of the compilation scheme are formalized in Coq and proven to be type-safe. The concrete
implementation of the CP compiler targets JavaScript, where records are modeled as JavaScript objects. We
conduct an empirical evaluation with various benchmarks and evaluate the impact of several CP-specific
optimizations. With our optimizations, CP can be orders of magnitude faster than with a naive compilation
scheme for merges, obtaining performance on par with class-based JavaScript programs.

CCS Concepts: « Software and its engineering — Compilers; Inheritance; Object oriented languages.

Additional Key Words and Phrases: Compositional Programming, Separate Compilation

1 Introduction

Many programming language constructs are first-class. First-class functions are a key construct of
functional programming. Similarly, objects are first-class in object-oriented programming (OOP).
First-class constructs enable the corresponding values to be abstracted by variables, passed as
arguments, or returned by functions or methods.

While classes are pervasive in most OOP languages, first-class classes are much less studied,
and they are rarely supported in mainstream statically typed OOP languages. Languages such as
Java, C#, and Swift, just to name a few, do not support first-class classes. In these languages, no
variables can abstract over classes, and thus a class cannot pick which class to inherit from at run
time. Nevertheless, some dynamically typed languages treat classes as first-class constructs and

Authors’ Contact Information: Yaozhu Sun, The University of Hong Kong, China and National Institute of Informatics,
Japan, yzsun@cs.hku.hk; Xuejing Huang, The University of Hong Kong, China and IRIF, Université Paris Cité, France,
xjhuang@cs.hku.hk; Bruno C. d. S. Oliveira, The University of Hong Kong, China, bruno@cs.hku.hk.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM 1558-4593/2025/8-ART

https://doi.org/10.1145/nnnnnnn.nnnnnnn

ACM Trans. Program. Lang. Syst.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 Yaozhu Sun, Xuejing Huang, and Bruno C. d. S. Oliveira

class A { class B extends A {
m() { return 48 } m() { return "Hi" }
} }

Fig. 1. JavaScript allows unconstrained overriding, whereas TypeScript’s type system attempts to prevent
type-unsafe overriding and statically rejects the above example.

allow dynamic inheritance. Taking JavaScript! as an example, a base class can be passed as an
argument, and the inheritance hierarchy is determined at run time, after the application of the
function happens:

function Mixin(Base) {
return class extends Base {
greet() { alert('Hello, world!') }
b
}

First-class classes offer powerful and flexible abstraction mechanisms for programmers. For instance,
mixins [Bracha and Cook 1990], which are class-like abstractions that can be mixed into other
classes to add new features, are encodable via first-class classes and dynamic inheritance. In our
example, the Mixin function creates a class that inherits from Base and adds a greet method. At
run time, we can apply Mixin to different base classes that need greet. Dynamic inheritance rejects
the common assumption that inheritance hierarchies are fixed at compile time, providing a greater
degree of flexibility compared to static inheritance. Furthermore, first-class classes provide natural
support for nested classes: classes defined within another class, or even inside methods or functions
as in the Mixin example. Nested classes can access definitions and methods in the surrounding
lexical scope. In JavaScript, nested classes are supported via first-class classes. Some other OOP
languages, such as Java, support nested classes without supporting first-class classes.

To ensure type-safe inheritance, an important concern is how to deal with overriding and, more
generally, method conflicts. JavaScript deals with method conflicts by employing implicit overriding.
That is, a method in a subclass will override a method in the superclass if the superclass contains
a method with the same name. Otherwise, a new method is defined in the subclass if no method
with the same name exists in the superclass. In JavaScript or other dynamically typed languages,
overriding is completely unconstrained, allowing the overriding method to return a different type.
An example is shown in Fig. 1. Such overriding is not type-safe if an object of the subclass B is to be
used in the place where the superclass A is expected, since the method m in A is expected to return a
number instead of a string.

Since TypeScript is a superset of JavaScript, it adopts the same implicit overriding approach.
However, like most statically typed OOP languages, TypeScript places restrictions on overriding
to ensure type safety. In TypeScript, overriding methods must have types compatible with the
overridden ones, in order to allow for the safe use of a subclass in the place of a superclass. Another
possibility is to allow subclasses not to be subtypes of the superclass [Cook et al. 1990], which
is sometimes seen in structurally typed OOP languages. In this case, a subclass may not always
be used in place of a superclass, and a type system can prevent the use of subclasses that are not
subtypes. Nevertheless, this does not imply that overriding can be fully unconstrained, as it is still
possible to have type-safety issues even when inheritance does not imply subtyping.

! Although object-orientation in JavaScript is originally prototype-based, newer standards (ECMAScript 6+) also support
classes on top of prototypes.

ACM Trans. Program. Lang. Syst.

Type-Safe Compilation of Dynamic Inheritance via Merging 3

First-class classes and dynamic inheritance make type-safe overriding much harder. Few statically
typed languages attempt to support such features, and some of the ones that do have type-unsound
designs. For instance, in addition to supporting conventional static inheritance idioms, TypeScript
also supports dynamic inheritance, but its type system cannot always ensure type-safe overriding.
With dynamic inheritance, the exact type of the superclass is unknown statically, so it is hard to
guarantee that no method is accidentally overridden with an incompatible type at run time. We
will illustrate this point using examples in TypeScript later in this paper.

Implicit overriding is not the only way to deal with method conflicts. Another possibility is to
detect and prevent conflicts, disallowing any form of implicit overriding. For instance, the trait
model [Ducasse et al. 2006] adopts an approach where implicit overriding is disallowed. With
traits overriding is still possible, but it must be explicitly triggered by the programmer, instead of
being implicitly done by the compiler. For instance, when composing two traits with conflicts, the
composition will be rejected. To resolve conflicts, a programmer can, for example, decide to take
one of the implementations for the method, or provide a new method implementation instead.

Yet another possibility to deal with conflicts is what we call merging in this paper. Merging is
not a new idea and has been used to a certain degree in existing programming language designs.
For instance, merging is central in programming language designs with virtual classes [Clarke et al.
2007; Ernst et al. 2006; Madsen and Meller-Pedersen 1989] and family polymorphism [Ernst 2001;
Saito et al. 2008; Zhang and Myers 2017]. Virtual classes are a form of nested classes. However, the
main feature of virtual classes is that, when a virtual class conflicts with another virtual class with
the same name, the old class is not overridden. Instead, the behaviors of the two classes are merged:
the new class will contain all the methods of the old class as well as the new methods. So, unlike
overriding, merging does not replace existing behaviors. Instead, it preserves existing behaviors
and adds some new ones.”

The idea of merging can be extended to deal with conventional methods as well. For example, in
a language that adopts merging, code similar to that in Fig. 1 can be accepted. Class B would contain
two versions of the method m: one returning a number and the other returning a string. In other
words, merging would act as a kind of overloading in this case, enabling two methods with the
same name but different types to coexist in the same class. Invocations of m could be disambiguated
by the surrounding context or, if needed, by the programmer. Of course, in the merging model, the
combination of two methods with the same name and related types would still be problematic, as it
would not be clear how to choose and disambiguate between the two method implementations.

A solution to this problem is to adopt a trait-like model with merging. This model has been
adopted by the CP language [Zhang et al. 2021] and is the focus of this paper. In a trait-like model
with merging, method conflicts are still forbidden, but methods with the same name and disjoint
types (i.e. the types are unrelated) do not create a conflict. In other words, if we compose two traits,
each having a method with the same name and related types, then we get an error due to a method
conflict. However, if the methods have the same name but disjoint types, then the composition
is accepted, and the resulting object will retain the two method implementations. By allowing
merging in the disjoint case, we can express the forms of composition that are required for virtual
classes. In such cases, virtual classes are modeled as fields, and two virtual classes with the same
name but disjoint interfaces (i.e. the types of the virtual class methods) can be merged.

Such a model offers important advantages over designs that adopt implicit overriding instead. A
first advantage is that we can obtain flexible, powerful, and type-safe inheritance models and avoid

2Strictly speaking, most designs with virtual classes will combine merging with overriding, in the case that the two virtual
classes have conflicting methods. In our discussion, when we describe merging, we assume that the sets of methods in the
two virtual classes are disjoint and, consequently, no overriding takes place.

ACM Trans. Program. Lang. Syst.

4 Yaozhu Sun, Xuejing Huang, and Bruno C. d. S. Oliveira

many of the restrictions imposed by languages with static inheritance. With merging it is possible
to have a model of inheritance that allows dynamic inheritance and forms of multiple inheritance
and family polymorphism all at once. We are aware of some designs with dynamic inheritance and
first-class classes [Lee et al. 2015; Takikawa et al. 2012], but without family polymorphism. We
are also aware of some designs with both multiple inheritance and family polymorphism [Aracic
et al. 2006; Clarke et al. 2007; Nystrom et al. 2006], but without dynamic inheritance. Except for the
CP language, which is our focus in this paper, the only statically typed language we know that
supports all three features is gbeta [Ernst 2000]. However, gbeta cannot statically guarantee that
every use of dynamic inheritance is type-safe, although Ernst [2002] proves a subset of use cases
to be type-safe. Moreover, separate compilation can only be supported with an inefficient linear
search through super-mixins for inherited attributes. To the best of our knowledge, CP is the only
language that supports all three features in a completely type-safe manner, without compromising
on modular type checking or separate compilation. We believe that this absence in the design space
is because it is hard to have flexible and type-safe designs that support all these features at once.

Because our design is based on the trait model, we also inherit its advantages. In particular,
since merging extends behavior rather than replace behavior, it is less prone to problems such as
the fragile base class problem [Mikhajlov and Sekerinski 1998]. As we shall see, in the presence
of dynamic inheritance, designs based on implicit overriding, such as TypeScript, exacerbate the
fragile base class problem: not only can overriding break invariants of the superclass, but it can also
break type safety! Designs based on a trait-model with merging preserve the behavior of inherited
classes and avoid the issues due to (implicit) overriding.

CP, short for compositional programming [Zhang et al. 2021], is a statically typed language
that supports dynamic inheritance and adopts a trait model with merging. CP-flavored traits
are first-class constructs [Bi and Oliveira 2018]. Thus, dynamic inheritance between traits is
possible. Moreover, trait inheritance in CP is built upon nested composition [Bi et al. 2018], which
enables a form of family polymorphism and virtual classes. The foundations of CP are well studied.
Several statically typed calculi based on disjoint intersection types [Oliveira et al. 2016] and a
merge operator [Dunfield 2014; Reynolds 1997] have been developed with small-step operational
semantics [Fan et al. 2022; Huang et al. 2021] or elaboration semantics [Alpuim et al. 2017; Bi et al.
2018, 2019; Oliveira et al. 2016]. The current implementation of CP by Sun et al. [2022] employs an
interpreter that is built upon the operational semantics studied in past work. Unfortunately, the
interpreter-based implementation is simple but inefficient.

This paper presents a CP compiler, supporting modular type checking and separate compilation.
Our primary source of inspiration comes from the elaboration approach by Dunfield [2014], where
intersection types and merges are compiled into product types and pairs. However, her work lacked
the distributive subtyping rules that are needed to achieve family polymorphism. More importantly,
her focus was on proving type safety, and she did not investigate ways to optimize the coercive
form of subtyping that is required by the elaboration approach. The naive use of coercive subtyping
has a significant impact on performance. Moreover, the choice of pairs in the elaboration means
that, merge lookup, the most common operation on merges, takes linear time in the worst case.

We show how CP code can be compiled to languages supporting extensible records or similar
mechanisms. We choose such targets because many existing languages support extensible records
or closely related mechanisms like hash maps, which can be dynamically extended with new fields.
These data structures are usually highly optimized to enable efficient implementations. This is
useful for obtaining fast lookup for merges in CP, which are used to encode dynamic inheritance,
as well as to model multi-field records. The lookup is type-based, and we employ a compilation
scheme that maps any CP type into a record label, leading to an efficient way to perform lookup
on merges. The concrete implementation of the CP compiler targets JavaScript, where records

ACM Trans. Program. Lang. Syst.

Type-Safe Compilation of Dynamic Inheritance via Merging 5

are modeled as JavaScript objects, and record extension is modeled by JavaScript’s support for
object extension. We also present a number of optimizations and conduct an empirical evaluation
to evaluate our implementation of the CP compiler.

In summary, the contributions of this paper are:

e A compilation scheme for dynamic inheritance and family polymorphism. We model
family-polymorphic dynamic multiple inheritance as nested trait composition via merging
in CP. We propose an efficient compilation scheme that translates merges into extensible
records, where types are used as record labels to perform lookup on merges. We also identify
a class of equivalent types to reduce the number of coercions that are required by subtyping.

e Mechanized type-safety proofs for the compilation scheme. We formalize the compila-
tion scheme as an elaboration from the] calculus [Bi et al. 2018; Huang et al. 2021] to a
calculus with extensible records called A,. We prove that this elaboration is type-safe. Both
the elaboration and its type-safety proofs are mechanized using the Coq proof assistant.

e A compiler for the CP language targeting JavaScript. We implement a compiler for
CP that targets JavaScript, following the ideas of the elaboration into extensible records. In
addition, the compiler also implements several other features of CP, which are not formalized,
including the support for parametric polymorphism and separate compilation.

e Several optimizations and an empirical evaluation. We discuss several optimizations
that we employ in the CP compiler and conduct an empirical evaluation to measure their
impact. Besides, we benchmark the JavaScript code generated by our compiler together with
handwritten JavaScript code.

The Coq proofs, the implementation of the CP compiler, and the benchmark suite are all included
in the supplementary materials, which are available at:

https://github.com/yzyzsun/CP-next/tree/toplas

2 Dynamic Inheritance, Overriding, and Type Safety

There are only a few statically typed languages that support first-class classes and dynamic inheri-
tance, among which are gheta [Ernst 2000], TypeScript [Microsoft 2012], Typed Racket [Takikawa
et al. 2012], and Wyvern [Lee et al. 2015]. Here we take the most popular one, TypeScript, as the
main example to illustrate the challenges of type-safe dynamic inheritance and reveal significant
limitations of TypeScript’s type system. We will also briefly mention JavaScript and Java to further
illustrate concepts related to first-class classes and dynamic inheritance. Discussions about gbeta,
Typed Racket, and Wyvern can be found in Section 8.

2.1 Class Inheritance and Structural Typing

Classes are the reusable building blocks in most OOP languages. They are reused by inheritance, a
mechanism to create a new class (called a subclass) based on an existing class (called a superclass).
Inheritance enables the reuse of implementations of methods or properties that are already provided
in the superclass. Furthermore, it is possible to override methods of the superclass with new
implementations that are more suitable for the subclass.

To make sure that instances of the subclass can be used in any context where its superclass
is expected, there is usually a requirement that the subclass has a subtype with respect to its
superclass. While inheritance is related to implementations, subtyping is a relation between types. In
many programming languages, class definitions class B extends A {...} introduce both relations
between A and B: class B inherits the implementation from class A, and it also introduces a subtyping
relation between the types of the two classes. For example, type B is required to be a subtype of
type A in TypeScript:

ACM Trans. Program. Lang. Syst.

https://github.com/yzyzsun/CP-next/tree/toplas

6 Yaozhu Sun, Xuejing Huang, and Bruno C. d. S. Oliveira

class B extends A {
class A {} m(): number { return 0; }

3

Owing to the same reason, when a method in the superclass is overridden, the new method in the
subclass must have a subtype. For example, the method f in C is overridden by the one in D below:

class C { class D extends C {
f(x: B): number { return x.m(); I} f(x: A): number { return 48; }
3 }

The overriding is type-safe because the latter method has a subtype of the former’s. According
to the standard subtyping rule for functions, the parameter type is contravariant, and the return
type is covariant. Since A is a supertype of B, the function type (x: A) = number is a subtype of
(x: B) = number.

Bivariant subtyping in TypeScript. Perhaps surprisingly, the following code also type-checks:

class E { class F extends E {
f(x: A): number { return 48; } f(x: B): number { return x.m(); }
} }

The parameter type of method f becomes a subtype of that in the superclass, but it still passes the
subtyping check. In other words, TypeScript does not follow the standard type-theoretic treatment
of function subtyping. Instead, TypeScript allows bivariant subtyping for method parameters, where
the type of method parameters being overridden can either be a subtype or a supertype of the
corresponding type in the superclass method. Bivariant subtyping is a well-known source of type
unsoundness. It would lead to a runtime error that could have been prevented statically:

const o: E = new F;
o.f(new A) // Runtime Error!

TypeScript developers are aware of this, but they justify the use of bivariant subtyping by large
numbers of use cases in the libraries that require this functionality.® In essence, TypeScript trades
type soundness for flexibility and thus supports a more flexible model of inheritance in some cases.

A type-safe alternative model for structural typing. TypeScript’s class model adopts the approach
that subclasses always generate subtypes of the superclass. Thus, it retains the familiar model that
is common in mainstream nominally typed languages like Java, C#, or Scala, which can be seen as
an advantage for attracting programmers from those languages.

However, unlike these mainstream programming languages, TypeScript is structurally typed.
With structural typing, there is a well-known alternative that would enable the overriding in
class F to be type-safe. As observed by Cook et al. [1990], inheritance is not subtyping. In the
context of a language of classes, this means that sometimes subclasses may not be subtypes of the
superclass. In particular, the parameter of a binary method [Bruce et al. 1995] is supposed to be
an object of the class being defined. In this case, the subclass will covariantly refine the type of
the method parameters, and thus detaching inheritance from subtyping can be helpful. Since there
is no subtyping relation between subclasses and superclasses in an inheritance-is-not-subtyping
approach, the standard contravariant subtyping rule, instead of bivariant subtyping, can be used
for function parameters, thus preventing type-safety issues that arise from bivariant subtyping.

Shttps://www.typescriptlang.org/tsconfig#strictFunction Types

ACM Trans. Program. Lang. Syst.

https://www.typescriptlang.org/tsconfig#strictFunctionTypes

Type-Safe Compilation of Dynamic Inheritance via Merging 7

If TypeScript adopted an inheritance-is-not-subtyping approach instead, then the code for F
could still type-check, but the subclass F would not be a subtype of its superclass E. Therefore, the
runtime error would be prevented because the line would be rejected with a type error:

const o: E = new F; // Invalid upcast in an inheritance-is-not-subtyping approach!

While type-safe, the inheritance-is-not-subtyping approach departs from the conventional model
adopted by mainstream languages. So, it could be harder for programmers (especially those used to
other mainstream OOP languages) to understand that sometimes subclasses cannot be subtypes.
This is perhaps a reason (among others) for TypeScript not adopting this approach. Nevertheless,
we adopt a model based on inheritance-is-not-subtyping because it allows a more flexible but still
type-safe form of inheritance.

2.2 Unsafe Overriding with Dynamic Inheritance

TypeScript differs from other mainstream OOP languages in that it also supports dynamic inheri-
tance. Dynamic inheritance brings new type-safety considerations with respect to overriding. These
issues are not due to the use of bivariant subtyping and appear to be unknown or undocumented
by the TypeScript implementers. Nevertheless, in order to obtain a type-safe design, we must be
able to address the type-safety issues that may arise from dynamic inheritance. Thus, the purpose
of this subsection is to identify such a problem in TypeScript. We call this problem the inexact
superclass problem, because it arises from a mismatch between the statically expected type of
the superclass and the actual (exact) type of the superclass. In Section 3.3, we will show how this
problem can be addressed in a type-safe manner.

Dynamic inheritance in TypeScript. While JavaScript accepts the unsafe overriding in Fig. 1,
TypeScript detects the type mismatch between the two methods and rejects the code. For top-level
classes and static inheritance, TypeScript’s type system is quite standard and rejects many unsafe
examples. However, the checks that TypeScript does are insufficient for dynamic inheritance, which
is recommended by the TypeScript documentation to implement mixins.* We illustrate the issue in
the program in Fig. 2.

Our example follows the guidelines in the TypeScript documentation to type mixins and first-
class classes. First of all, a type Constructor is declared to represent a class. Since its return type is
an empty object type, the type of every class is a subtype of Constructor. In other words, every class
can be used as Base. The function Mixin takes a base class of type TBase and returns a new class that
extends (or overrides) the base class with the method m. Then we obtain class B by applying Mixin
to class A. Note that A already has a method m with a different type, and the other method n relies
on m returning a string. However, the subclass returned by Mixin overrides m with a method that
returns a number instead. Finally, we instantiate the class B and call the method n. A runtime error
occurs because the method m is unexpectedly overridden. In essence, we cannot predict the exact
type of the superclass at compile time, so we cannot prevent the unsafe overriding as statically
typed languages do for second-class classes and static inheritance.

Constrained mixins. The TypeScript documentation also mentions constrained mixins, which
provide finer control on the base class. In a constrained mixin, the base class is known to have
some methods, which is useful for the subclass to safely rely on those methods being present in the
superclass. Constrained mixins are modeled with a generic version of Constructor:

type GConstructor<T = {}> = new (...args: any[]) = T;
4https://www.typescriptlang.org/docs/handbook/mixins.html

ACM Trans. Program. Lang. Syst.

https://www.typescriptlang.org/docs/handbook/mixins.html

8 Yaozhu Sun, Xuejing Huang, and Bruno C. d. S. Oliveira

type Constructor = new (...args: any[]) = {3};

function Mixin<TBase extends Constructor>(Base: TBase) {
return class extends Base {
m(): number { return 48; } // If m() exists in Base, that one will be overridden.

};

class A {
m(): string { return "foobar"; }
n(): string { return this.m().toUpperCase(); }

}
const B = Mixin(A); // We use A as Base, which contains m() with a different type.
(new B).n() // Runtime Error!

Fig. 2. Inexact Superclass Problem: Dynamic inheritance is type-unsafe in TypeScript.

The generic parameter T represents the interface of the base class and defaults to an empty object
type. For example, we can define another mixin that relies on a method called pow:

type Exponentiatable = GConstructor<{ pow: (x: number, y: number) = number }>;

function AnotherMixin<TBase extends Exponentiatable>(Base: TBase) {

return class extends Base {

cube(x: number) { return this.pow(x, 3); }

Y
}
In AnotherMixin, the method cube relies on this. pow, which is declared to be present by the interface
Exponentiatable. Similarly, in the definition of Mixin in Fig. 2, we could declare that TBase extends
some type like GConstructor<AInterface>. Although the base class is constrained by the interface
now, it still does not help with the issue of unsafe overriding. The problem here is that the base
class may contain more methods than the expected interface. For instance, the base class could
contain another method called cube that would return a string, and would be called in the base class
by some other method rubik. Then we could still run into the same problem, if rubik is called from
an object that combines both classes. There is no way in TypeScript to express the constraint that
cube is absent in the base class. Such absence constraints are key to preventing unsafe overriding
in dynamic inheritance while retaining flexibility.

From static to dynamic inheritance. The crucial point in our examples is that dynamic inheritance
has the flexibility to pass a class with a subtype of the expected type for the base class in Mixin.
Languages with static inheritance and second-class classes, like Java or C#, do not have this flexibility.
Subclassing is usually modeled with a construct like class B extends A {...}.In languages with
first-class classes, A can be an arbitrary expression; but in languages with static inheritance, it can
only be a concrete class name. In Java, for instance, a class A is associated both to a type A, which is
the exact interface (or type) of the class, and a corresponding implementation of type A. In other
words, a class declaration has two roles in these languages: declaring an interface and providing an
implementation with exactly that interface. Thus, we can never inherit from an implementation

ACM Trans. Program. Lang. Syst.

Type-Safe Compilation of Dynamic Inheritance via Merging 9

class ANSIString {
constructor(str) {
this.length = str.length;
this.chars = str.split('');
}
Iterator() {
const outer = this;
return class {
index = 0;
hasNext() { return this.index < outer.length; }
next() { return outer.chars[this.index++]; }
b
}
print() {
const it = new (this.Iterator()); // Iterator is dynamically bound.
while (it.hasNext()) alert(it.next());
}

Fig. 3. A string iterator in JavaScript using nested classes.

that has a subtype of the superclass type. This avoids the inexact superclass problem that we have
to face with dynamic inheritance in our TypeScript example, at the cost of flexibility.

2.3 Nested Classes via First-Class Classes

Both JavaScript and TypeScript support first-class classes: a class can be defined in various places
including within another class, or even a method. Thus, nested classes come (almost) for free once a
language supports first-class classes. In contrast, some other OOP languages, such as Java, do not
support first-class classes, but they still add support for nested classes as a separate feature.
Nested classes are useful for encapsulation, and usually, they can make use of the definitions
from the outer class. For example, Fig. 3 shows how to model a string-specific iterator as a nested
class in JavaScript. The constructor for the Iterator class is modeled by a factory method. The
method print relies on the nested iterator class to iterate over the characters in the string.

Why not a class field? In JavaScript, the use of the factory method is important to provide access
to this of the outer class. If we declare a class field directly with Iterator = class {...}, we would
not be able to access the properties and methods of ANSIString within Iterator. JavaScript does
not provide a direct way to refer to the outer this from the nested class. That is why we have to
capture the reference to the outer this in a variable outer before using it in the nested class. Then,
the properties declared in the outer class, length for example, can be accessed via outer.length.
The second reason for using a factory method is to make access to super.Iterator possible in a
subclass of ANSIString. In JavaScript, a class field defined by the superclass is not accessible in the
subclass via super. Declaring Iterator as a factory method bypasses the restriction. Although we
do not use super.Iterator in the current example, Section 2.4 will show some use cases.

Overriding nested classes. In JavaScript, the inheritance behavior for nested classes is consistent
with that for methods: they both employ an overriding semantics. This is partly because nested
classes must always be accessed via a property or a method, and then we just use the default

ACM Trans. Program. Lang. Syst.

10 Yaozhu Sun, Xuejing Huang, and Bruno C. d. S. Oliveira

overriding semantics for them. The ability to override nested classes allows some useful forms of
family polymorphism, as we shall discuss in Section 2.4. However, it is also a problem for type
safety since we can override a class with another class that has an entirely (or partially) different
set of methods. For example, the following code is allowed in JavaScript:

class UTF8String extends ANSIString {
Iterator() { return class {
forkEach(callback) { /*x ... %/ }
32
3
(new UTF8String("Hi")).print(); // Runtime Error!

The class Iterator nested in ANSIString contains two methods hasNext and next, while the one
nested in UTF8String only contains a different method forEach. After overriding, print triggers a
runtime error since it depends on the aforementioned two methods. Therefore, code relying on
nested classes having a certain interface can be completely broken by an override that replaces the
class with some other incompatible class.

Nested classes in TypeScript. TypeScript also attempts to prevent type-unsafe overriding for
nested classes. Similar code will be rejected by TypeScript because of the type incompatibility
between the two nested classes. However, with dynamic inheritance, the type system still suffers
from similar issues to those shown in Fig. 2:

function Mixin<TBase extends Constructor>(Base: TBase) {
return class extends Base {
Iterator() { return class {
forEach(callback: (_: string) = void) { /» ... */ }
N
b
3
const UTF8String = Mixin(ANSIString);
(new UTF8String("Hi")).print(); // Runtime Error!

Therefore, TypeScript’s support for nested classes is also affected by the inexact superclass problem.
Thus, nested classes can have type-soundness issues as well.

Nested classes with shadowing in Java. Finally, let us make a small digression to see how nested
classes are treated in Java. Fig. 4 illustrates a variant of our example in Java. Similarly to the example
in JavaScript, we create a new class UTF8String that inherits from ANSIString and define a different
set of methods in the nested class Iterator. The code type-checks in Java and is still type-safe. The
key to the type safety is that, unlike methods, nested classes are not implicitly overridden in Java.
Instead, the Iterator in UTF8String shadows the one in ANSIString. In other words, new Iterator()
in print is statically bound and is always instantiating ANSIString.Iterator. Nested classes are not
dynamically dispatched in Java, which is inconsistent with the inheritance behavior for methods.
The shadowing approach has the advantage of type safety, but this comes at the cost of flexibility,
since the ability to override and dynamically bind nested classes is useful, as we shall see next.

2.4 Virtual Classes and Family Polymorphism

The ability to override or refine nested classes provides a considerable amount of flexibility, and is
a key idea behind concepts such as virtual classes [Clarke et al. 2007; Ernst et al. 2006; Madsen and
Moller-Pedersen 1989] and family polymorphism [Ernst 2001; Saito et al. 2008; Zhang and Myers

ACM Trans. Program. Lang. Syst.

Type-Safe Compilation of Dynamic Inheritance via Merging 11

class ANSIString {
int length;
char[] chars;
ANSIString(String str) {
length = str.length();
chars = str.toCharArray();

}

class Iterator {
int index;
boolean hasNext() { return index < length; }
char next() { return chars[index++]; }

}

void print() {
Iterator it = new Iterator(); // Iterator is statically bound.
while (it.hasNext()) System.out.print(it.next());

}
class UTF8String extends ANSIString {
UTF8String(String str) { super(str); } // We trivially call super's constructor.

class Iterator { // This class shadows ANSIString.Iterator.
void forEach(Consumer<? super Character> action) { /*x ... */ }

Fig. 4. Nested classes in Java, with a shadowing semantics.

2017]. Thus, as we shall argue in this subsection, both JavaScript and TypeScript support virtual
classes to a large extent, which can be useful for writing highly modular and reusable code.

Virtual classes. As we have seen before, a method in a superclass can be overridden in a subclass
to refine its behavior. A call to the method is dynamically dispatched according to the runtime type
of the object. Such a late-bound method is called a virtual method. In the same way, the power of
dynamic dispatching can be extended to nested classes. Virtual classes are nested classes that can
be overridden (or rather refined) in subclasses, and the reference to the virtual class is determined
by the runtime type of the object of the outer class. Virtual classes were originally introduced in
the BETA programming language [Madsen et al. 1993], and they are also essentially supported in
JavaScript and TypeScript via first-class classes and the overriding semantics.

Family polymorphism. Virtual classes enable family polymorphism, which naturally solves the
long-standing dilemma of modularity and extensibility — the expression problem [Wadler 1998] - in
a Scandinavian style [Ernst 2004]. In the expression problem, the challenge is to provide various
operations (evaluation, pretty-printing, etc.) over various expressions (numbers, addition, negation,
etc.) in a modular fashion. A satisfactory solution should allow modular, type-safe extension to
both expressions and operations.

We start the example with numeric literals and addition, as well as the evaluation operation
in Fig. 5a. Lit, for numeric literals, and Add, for addition, form the initial class family FamilyEval.

ACM Trans. Program. Lang. Syst.

12

type Eval = { eval: () = number };

class FamilyEval {
Lit(n: number) {
return class {
eval() { return n; }
b
}
Add(l: Eval, r: Eval) {
return class {
eval() { return l.eval() +
r.eval(); }
b

(a) Initial family.

Yaozhu Sun, Xuejing Huang, and Bruno C. d. S. Oliveira

type Print = { print: () = string };

class FamilyPrint extends FamilyEval {
Lit(n: number) {
return class extends super.Lit(n) {
print() { return n.toString(); }
b
}
Add(l: Eval&Print, r: Eval&Print) {
return class extends super.Add(l, r) {
print() { return l.print() + " + " +
r.print(); }
b

(b) Adding a new operation.

class FamilyNeg extends FamilyPrint {
Neg(e: Eval&Print) {
return class {
eval() { return -e.eval(); }
print() { return "-(" + e.print() + ")"; }
b

(c) Adding a new expression.

Fig. 5. Expression Problem in TypeScript.

Since TypeScript is structurally typed, we do not need to declare an abstract class or interface Exp
together with Lit and Add. Instead, we can directly use type Eval to annotate the parameters of Add.

To add a new operation, say pretty-printing, we can create a new class family FamilyPrint that
inherits from FamilyEval. Fig. 5b shows the code for the new family. In the new family, Lit and Add
also inherit from super.Lit and super.Add, and a new method print is added to both of them. The
new operation is represented by type Print, and the parameters of Add are refined to have type
Eval&Print. As mentioned in Section 2.1, TypeScript allows bivariant subtyping for parameters
of class members, so the unusual refinement of Add type-checks here. Note that the overriding of
nested classes is a special case here: Lit and Add are simply extended with new methods, with no
existing methods being overridden. In other words, the nested classes are being merged, instead of
overriding existing functionality.

Similarly, we create a new family FamilyNeg for a new expression, say negation in Fig. 5c. Finally,
we instantiate FamilyNeg and build an expression using all three constructors (Lit, Add, and Neg).
Both operations (eval and print) are available for the expression:

const fam = new FamilyNeg();
const e = new (fam.Add(new (fam.Lit(48)), new (fam.Neg(new (fam.Lit(2))))));

ACM Trans. Program. Lang. Syst.

Type-Safe Compilation of Dynamic Inheritance via Merging 13

e.print() + " =" + e.eval() // "48 + -(2) = 46"

In this way, we can solve the expression problem in TypeScript (modulo the type-safety requirement).
Although TypeScript does not fully ensure type safety, its support for a rather minimal encoding of
virtual classes allows a lot of flexibility and reuse, which can be quite useful in practice.

One final remark is that the solution in TypeScript is still not completely satisfactory because
the order of extensions is fixed by the inheritance hierarchy (from FamilyEval to FamilyPrint
to FamilyNeg). In other words, the extension of Neg is coupled to the extension of Print, and we
cannot use the extension of Neg independently. This issue was not mentioned by Wadler in the
original expression problem, but it was later identified by Zenger and Odersky [2005] as independent
extensibility. In TypeScript, a possibility to address the coupling issue is to adopt the mixin pattern,
making class families such as FamilyPrint and FamilyNeg functions parametrized by the family
superclass. For simplicity of presentation, we have just employed static inheritance here. We will
also address this issue in CP’s solution in Section 3.4, which provides a simple and natural approach
to avoid coupling and, additionally, is type-safe.

2.5 Problem Statement and Paper Roadmap

A three-fold challenge: achieving flexibility, efficiency, and type safety. Ideally, programming
languages with dynamic inheritance and first-class classes should have three properties:

(1) Flexibility: The language should be flexible so that highly dynamic patterns of inheritance
are allowed. Thus, it should be possible to support dynamic forms of mixins or traits, as well
as nested classes or even virtual classes and family polymorphism.

(2) Reasonable efficiency and separate compilation: For practical implementations, it is
desirable to have a compilation model that is reasonably efficient and supports good software
engineering properties, such as separate compilation.

(3) Type safety: The language should be type-safe, so that type errors can be prevented statically.

Both JavaScript and TypeScript support points (1) and (2) well. As we have seen, with first-class
classes, we can model dynamic inheritance, mixins, nested classes, and even virtual classes and
family polymorphism. Therefore, the inheritance model provided by JavaScript and TypeScript
is expressive and flexible. Furthermore, there has been a lot of work on optimizing JavaScript
implementations, so JavaScript and TypeScript’s inheritance and class model are reasonably efficient.

Unfortunately, for point (3), TypeScript’s support for type-checking first-class classes has a few
type-soundness holes. Some of these holes, such as the use of bivariant subtyping, are known
and documented. First-class classes bring new issues, such as the inexact superclass problem. The
inexact superclass problem can be avoided by moving into a model based on static inheritance,
which is the option widely adopted by most mainstream languages. However, this trades flexibility
for type safety. Ideally, we want to avoid this trade-off. Retaining flexibility and type safety while
addressing the inexact superclass problem is non-trivial. In particular, it seems to be hard with the
overriding semantics of JavaScript, which simply overrides properties that have the same name.
Thus, to achieve the three goals together, a new compilation scheme seems desirable.

Previous work on compositional programming and CP [Zhang et al. 2021] has addressed points
(1) and (3). However, that work has not studied practical implementability questions, such as how
to have a reasonably efficient compilation model with separate compilation. Although there is an
implementation of the CP language, this implementation is based on an interpreter. Moreover, the
semantics underlying compositional programming languages rely on coercive subtyping [Luo et al.
2013], which raises immediate questions in terms of efficiency, since upcasts lead to computational
overhead. A naive implementation that inserts coercions every time upcasting is needed has a
prohibitive cost, which can be orders of magnitude slower than JavaScript programs.

ACM Trans. Program. Lang. Syst.

14 Yaozhu Sun, Xuejing Huang, and Bruno C. d. S. Oliveira

Solving the three-fold challenge: efficient compilation for CP. The problem that this paper solves is
how to compile compositional programming much more efficiently while also supporting separate
compilation. Therefore, we obtain property (2), which was missing on previous work on CP. Thus,
we can solve the three-fold challenge. We should emphasize that our work lacks various features
supported by JavaScript and TypeScript, and the semantics we employ for inheritance has some
important differences from JavaScript. Thus, our work does not offer an immediate solution that
TypeScript can adopt as a type-safe replacement for their current class model. Nevertheless, our
compilation model can be useful for new languages that aim to have highly expressive models of
inheritance while ensuring type safety. Moreover, it can inform existing language designers, who
may be able to borrow some ideas to improve their language designs.

Paper roadmap. In Section 3, we will give an overview of CP and see how the CP language
addresses the type-safety issues of dynamic inheritance while retaining flexibility. Section 4 then
describes the key ideas in our new compilation scheme and its implementation in the CP compiler.
Section 5 formalizes a simplified version of the compilation scheme along some of the key ideas.
Section 6 explains implementation details, including the JavaScript code that is generated and some
core optimizations in the CP compiler. Section 7 provides an empirical evaluation, and Section 8
discusses related work. Finally, Section 9 concludes the paper and outlines future work.

3 Dynamic Inheritance in CP

CP [Zhang et al. 2021] is a statically typed language that supports dynamic inheritance via merging
and still guarantees type safety. In this section, we first give an overview of the key features of
CP: merges and disjointness. We then show how potential conflicts in dynamic inheritance are
resolved in CP, and how CP solves the inexact superclass problem. Finally, we demonstrate a form
of dynamic family polymorphism in CP.

3.1 Merges, Disjointness, and the Treatment of Conflicts

The merge operator is used to construct a term that has an intersection type. The idea originates
from the Forsythe programming language by Reynolds [1997], but the general merge operator that
we employ was first introduced by Dunfield [2014]. If e; has type A and e, has type B, then the
merged term (e; , e;) has the intersection type (A & B). When we specialize A and B to be record
types, e , e; is basically concatenating two records. Therefore, the merge operator can be regarded
as a generalized form of record concatenation. Since objects are commonly modeled as records in
the literature, record concatenation, or more generally, the merge operator is closely related to
inheritance [Cook and Palsberg 1989; Wand 1991].

However, adding an unrestricted merge operator to a language would lead to semantic ambiguity.
In other words, the semantics of the language would become non-deterministic. For example,
(1, 2) + 3 could evaluate to either 4 or 5. That is why Oliveira et al. [2016] introduced the notion
of disjointness to avoid ambiguity. If specialized to record types again, disjointness is similar to
constraints used in row polymorphism [Harper and Pierce 1991]. In the presence of disjointness, the
two terms to be merged are restricted to have disjoint types so that the information they convey
does not overlap. By this means, 1, 2 is rejected because it is not well-typed, as Int and Int itself
are not disjoint.

Interaction between merging and subtyping. According to the notion of disjointness, { x: Int }
and { x: Int } itself are not disjoint either, so the merge r, s is rejected in the following code:

let merge (r: { x: Int }) (s: { x: Int }) = r,s in -- Type Error!
merge { x =13} {x=33} -—>{x=77}

ACM Trans. Program. Lang. Syst.

Type-Safe Compilation of Dynamic Inheritance via Merging 15

If we further consider subtyping, the merge operator is still problematic, and disjointness alone is
not sufficient to prevent ambiguity. For example, consider the following code:

let merge (r: { x: Int }) (s: { y: Int }) = r,s in
merge { x =1; y=23}{x=3;y=43} -——>{x=7,y=77}

Note that we change the type of s from { x: Int }to{ y: Int }. Although the type of s is now
disjoint with that of r, we can pass terms of their subtypes to merge. In this case, r has an extra
field y and s has an extra x. Now the issue of ambiguity occurs again.

If we look at the function merge statically, we would expect that the field x is from r and y from
s. Therefore, the most reasonable result for the code aboveis { x = 1; y = 4 }. However, there
is no naive way to implement the merge operator to achieve this result. Neither left-biased nor
right-biased overriding is able to handle this case. Furthermore, selecting other fields at run time
can lead to type unsoundness. For example, consider a variant of the previous merge:

merge { x = 1; y = "Hi" } { x = "Bye"; y=43} -—>{x=7,y=77}

Statically, the function is expected to compute a value of type { x: Int; y: Int 3}, but fields of
type String could be selected. The interaction between record concatenation and subtyping is
inherently difficult and was the reason preventing Cardelli and Mitchell [1991] from choosing
concatenation as the primitive operator in their calculus. This problem is closely related to the
inexact superclass problem discussed in Section 2.2, which can be seen as a manifestation of the
more general problem identified by Cardelli and Mitchell.

The solution found in the line of work by Oliveira et al. [2016] is to employ a coercive semantics
of subtyping, where a subtyping relationship A <: B implies a coercion function of type A — B.
This solution picks the field x from s and y from r, by being aware of the static types when selecting
components. In the previous example, during the function application, r is coerced to a single-field
record { x = 1 }, corresponding to the parameter type { x: Int }. A similar coercion is inserted
for s as well, coercing it to { y = 4 }. Then the merge operator simply concatenates { x = 1 } and
{ y = 4 3}, which has no ambiguity. Thus, a combination of disjointness and a coercive approach to
subtyping is able to eliminate the ambiguity introduced by an unrestricted merge operator.

Disjoint polymorphism and disjointness constraints. In the previous example, some type informa-
tion about the records being merged is lost. But we may wish to preserve other fields in the records
that do not create ambiguity. This can be achieved by merging polymorphic terms, whose static
types are not fully known. For example, consider a variant of the previous example:

let mergeSub (A <: { x: Int }) (B <: { y: Int }) (r: A) (s: B) = r,s in
mergeSub @{ x: Int; y: Int } @ x: Int; y: Int } { x=1; y=23}{x=3;y=41}%

The code is written in pseudo-CP, where <: denotes the upper bound of a type parameter. In
this example, A and B are declared to be subtypes of { x: Int } and { y: Int } respectively.
Since CP does not yet support implicit polymorphism, both type parameters are instantiated
explicitly on the second line. Like in Haskell, @ is the prefix of type arguments in CP. With bounded
quantification [Cardelli and Wegner 1985], we cannot guarantee the disjointness of A and B, so the
issue of ambiguity comes back again. This issue can be solved by disjoint quantification [Alpuim
et al. 2017] (disjointness is denoted by *):

let mergeDis (A x { y: Int }) B*A&{x:Int}) --B=*AandB=*{ x: Int }
(r: A {x: Int }) (s: B&{y: Int }) =r,s in
mergeDis @{ y: Int } @{ x: Int } { x=1; y=23}{x=3;y=43} -- Type Error!

mergeDis @Top @Top { x =1} {y=43} -—>{x=1;y =473}

ACM Trans. Program. Lang. Syst.

16 Yaozhu Sun, Xuejing Huang, and Bruno C. d. S. Oliveira

Note that the type of risnow A & { x: Int }instead of A. This is how we usually translate subtype-
bounded quantification to disjoint quantification [Xie et al. 2020]. The type parameter A is declared
to be disjoint with { y: Int } to avoid the overlap, and B is disjoint with { x: Int } similarly.
Another important constraint here is the disjointness of A and B, ensuring that other fields will
never conflict as well. For example, consider a third field of type { z: Int }:

mergeDis @{ z: Int } @ z: Int } { x=1; z=53}{y=4;, z=6 73} -- Type Error!
mergeDis @Top @{ z: Int } { x =13} {y=4;z2=63} -——>{x=1;,y=4; z=67

The first line of code fails to type-check because A and B are not disjoint and both contain a field
of type { z: Int }. The second line resolves the conflict, and we can access all three fields after
merging. The absence of certain fields is not expressible in TypeScript. As we shall see in Section 3.3,
this is important for CP to safely handle dynamic inheritance.

3.2 From Merging to Inheritance

Let us now turn to the topic of how we model inheritance as merging. According to the denotational
semantics of inheritance [Cook and Palsberg 1989], an object is essentially a record, and a class (or
a trait in CP) is essentially a function over records. Also note that, since CP is a purely functional
language, there is no distinction between object fields and methods — a method is just a field that
may have a function type. Class A in Fig. 2 can be encoded as:

type Rcd = { m: String; n: String };

-- class A
mkA = \(this: Rcd) — { m = "foobar"; n = toUpperCase this.m };

The function parameter this is a self-reference. With the self-reference, we can refer to other fields
like this.m in the n field. In this model, the instantiation of a class is obtained by taking a fixpoint
of the function. Furthermore, class inheritance can be encoded as record concatenation:

-- class B extends A
mkB = \(this: Rcd) — let super = mkA this in super , { m = 48 };

We first provide the new self-reference to mkA to obtain super. Then we merge super with the body
of class B to obtain the final object. After instantiating class B with a fixpoint, we can access the n

field:

o = fix this: Rcd. mkB this; --> { m = "foobar"; n = "FOOBAR"; m = 48 }
o.n --> "FOOBAR"

Here we get the expected result instead of a runtime error. The key point is that we allow duplicate
labels as long as the fields have disjoint types. Because of the merging semantics of CP, o will have
two m fields: one of type Int and the other of type String. Thus, unlike TypeScript, no implicit (and
type-unsafe) overriding happens in this case. Instead, both { m = "foobar" }and{ m = 48 } are
kept in the record o, and toUpperCase this.m will automatically pick the former one. Internally, o.m
has the intersection type String&Int, which means it contains a merge of a string and an integer.
Such behavior is a kind of overloading by return type, which is supported in some languages such
as Swift and Haskell (via type classes) [Marntirosian et al. 2020].

Traits in CP follow the aforementioned model of inheritance. Therefore, the example above can
be rewritten in the form of traits:

mkA
mkB

trait [this: Rcd] = { m = "foobar"; n = toUpperCase this.m };
trait [this: Rcd] inherits mkA = { m = 48 };

ACM Trans. Program. Lang. Syst.

Type-Safe Compilation of Dynamic Inheritance via Merging 17

The self-type annotation [this: Recd] corresponds to the function parameter this in the previous
code. If there is no use of this in any field, the self-type annotation can be omitted. The instantiation
of a trait is more conveniently done by the new keyword:

o = new mkB; o.n --> "FOOBAR"

Merging versus overriding. So far we have discussed how disjointness prevents ambiguity in
merging. Basically we avoid any overlap between the two terms to be merged. According to the
model of inheritance that we use, this constraint automatically applies to inheritance as well. One
may ask whether this means that overriding is forbidden in CP. This is not true: programmers can
explicitly declare overriding using the override keyword. For example, we can have:

base = trait = { m = 48 };
derived = trait inherits base = { override m = super.m - 2 };

This forces programmers to think about the potential conflict and make a decision. Scala and
other programming languages also require programmers to write override explicitly. Accidentally
overriding a field or a method in the base class can lead to unexpected behavior, which is a common
source of bugs in OOP languages. For example, base may have other fields that assume m is exactly
48 and will not work properly if m is overridden. This issue is also known as the fragile base class
problem [Mikhajlov and Sekerinski 1998]. At run time, CP will exclude the overridden field from
the base trait before merging.

Multiple inheritance. CP supports a form of multiple trait inheritance, which makes the treatment
of conflicts more complicated. For example, consider the following code:

basel = trait = { m = 48; n = "Hi" };
base2 = trait = { m = 46; n = "Bye" };
derived = trait inherits basel , base2 = { ... }; -- Type Error!

In some OOP languages that support multiple inheritance, such as Scala and Python, the order of
inheritance determines which field is chosen if fields in different base classes have the same name.
However, the default resolution order may not be what programmers desire. It easily causes bugs if
programmers are not aware of the implicit overriding. What is worse, there is no way to pick n
from base1 and m from base2 at the same time. In CP, programmers are again required to explicitly
resolve the conflicts, while having more flexibility to choose the desired fields:

derived = trait inherits basel\m , base2\n = { ... }; -- OK!
-=> trait = {n="Hi" }, {m=46 3}, { ...}

With the record restriction operator (\) powered by type difference [Xu et al. 2023], we can easily
remove m from basel and n from base?. In traditional OOP languages, inheritance involves two
things: inheriting all fields from the base classes, and overriding some of them. In contrast, symmetric
merging in CP does not imply any overriding. Nevertheless, for the sake of convenience, CP also
provides biased versions of merging (e.g. basel ,+ base2 or basel +, base2) if left-to-right or
right-to-left overriding is desired. They are also powered by type difference under the hood.

3.3 Dynamic Inheritance in CP

Now let us go back to the safety issue demonstrated in Fig. 2 and see how it can be solved in
CP. The code for a CP solution is shown in Fig. 6. Here the function mixin has two parameters:
TBase is a type parameter, which is disjoint with { m: Int }; and base is a term parameter, which
is a trait that implements TBase. Like first-class classes in TypeScript, we can dynamically create
a trait that inherits from base in CP. The difference here is that we can declare the absence of

ACM Trans. Program. Lang. Syst.

18 Yaozhu Sun, Xuejing Huang, and Bruno C. d. S. Oliveira

mixin (TBase * { m: Int }) (base: Trait<TBase>) =
trait [this: TBase] inherits base = { m = 48 };

mkA = trait [this: { m: String; n: String }] = {

m = "foobar";

n = toUpperCase this.m;
I
0 = new mixin @{ m: String; n: String } mkA;
o.n --> "FOOBAR"

Fig. 6. Solving the inexact superclass problem in CP.

{ m: Int }in the trait base to make sure that there is no conflict. As mentioned in Section 3.2, CP
does a fine-grained disjointness check that considers, not only the label name, but also the field
type. Therefore, { m: String } is disjoint with { m: Int }, and there is no conflict in the dynamic
inheritance. Since both versions of m fields are available in o, the n field can still rely on the original
m field that contains a string. Together with disjointness constraints, type safety is guaranteed in
CP without sacrificing the flexibility of dynamic inheritance.

Finally, if we apply mixin to a different trait that contains an m field of type Int:

mkA' = trait > { m=0; n =0 };
o = new mixin @{ m: Int; n: Int } mkA'; -- Type Error!

We will get a type error because { m: Int; n: Int }is not disjoint with { m: Int }.In other words,
the field min mkA' conflicts with m in mixin.

3.4 Family Polymorphism in CP

Here we revisit the example of family polymorphism in Section 2.4 and show how it can be
implemented in CP. As before, we start with the evaluation of numeric literals and addition. The
CP code is shown in Fig. 7a. The compositional interface AddSig serves as the specification of
expressions, while type Eval represents the evaluation operation. Note that <Exp> is a special type
parameter called a sort in CP. A sort is kept abstract until it is instantiated with a concrete type like
in AddSig<Eval>. The interface AddSig<Eval> is implemented by trait familyEval, where syntactic
sugar called method patterns is used to keep code compact. The desugared code is:

familyEval = trait implements AddSig<Eval> = {
Lit = \n — trait = { eval = n };
Add = \1 r — trait = { eval = l.eval + r.eval };

1

Although the syntactic sugar makes it seem that eval is defined by pattern matching of constructors,
(Lit n) and (Add 1 r) are actually nested traits, which are virtual and can be refined in CP.

The solution to the expression problem in CP is quite straightforward. To extend operations, we
instantiate the sort with another type and implement it with another trait. For example, Fig. 7b
shows how to add support for pretty-printing. In the other dimension, we add negation to numeric
literals and addition. We define a new compositional interface and implement both operations with
a trait in Fig. 7c. This time we instantiate the sort of NegSig with the intersection type Eval&Print.

Finally, we can compose the two-dimensional extensions together by the merge operator easily:

ACM Trans. Program. Lang. Syst.

Type-Safe Compilation of Dynamic Inheritance via Merging 19

type Print = { print: String };

familyPrint =
type AddSig<Exp> = { trait implements AddSig<Print> = {
Lit: Int — Exp; (Lit n).print = toString n;
Add: Exp — Exp — Exp; (Add 1 r).print = l.print ++ " + "
}; ++ r.print;
b

type Eval = { eval: Int };
(b) Adding a new operation.

familyEval =
trait implements AddSig<Eval> = { type NegSig<Exp> = { Neg: Exp — Exp };
(Lit n).eval = n;
(Add 1 r).eval = 1l.eval + r.eval; familyNeg =
}; trait implements NegSig<Eval&Print> = {
(Neg e).eval = -e.eval;
(a) Initial family. (Neg e).print = "-(" ++ e.print ++ ")";

1

(c) Adding a new expression.

Fig. 7. Expression Problem in CP.

fam = new familyEval,familyPrint,familyNeg : AddSig<Eval&Print> & NegSig<Eval&Print>;

Nested composition and distributive subtyping. The merge of the three traits seems simple from a
syntactic perspective. However, it requires a more sophisticated mechanism under the hood. Let us
look at the desugared code for the merge between familyEval and familyPrint:

trait implements AddSig<Eval> = { -- familyEval
Lit = \n — trait = { eval = n };
Add = \1 r — trait = { eval = l.eval + r.eval };
o,
trait implements AddSig<Print> = { -- familyPrint
Lit = \n — trait = { print = toString n };
Add = \1 r — trait = { print = l.print ++ " + " ++ r.print };
3

Our expectation is that the result of merging should contain, for example, a single constructor Lit
that supports both the eval and print operations. Therefore, the result should be equivalent to:

trait implements AddSig<Eval&Print> = {
Lit = \n — trait = { eval = n;
print = toString n };
Add = \1 r — trait = { eval = 1l.eval + r.eval;

print = 1.print ++ " + " ++ r.print };

}

To achieve this, CP employs nested composition [Bi et al. 2018] and distributive subtyping [Barendregt
et al. 1983], where traits, records, and functions distribute over intersections. In other words,

ACM Trans. Program. Lang. Syst.

20 Yaozhu Sun, Xuejing Huang, and Bruno C. d. S. Oliveira

merging applies to the whole trait hierarchy, including nested traits. This example showcases
family polymorphism by the refinement of nested traits (i.e. CP’s version of virtual classes).

With these features available in CP, we can access the three constructors (Lit, Add, and Neg) as
well as the two operations (eval and print), similarly to the previous TypeScript code:

e = new fam.Add (new fam.Lit 48) (new fam.Neg (new fam.Lit 2));
e.print ++ " = " ++ toString e.eval --> "48 + -(2) = 46"

Dynamic family polymorphism. Since merging generalizes dynamic inheritance, we can rewrite
familyNeg, for instance, using a mixin style:

familyNeg (TBase * NegSig<Eval&Print>) (base: Trait<TBase>) =
trait [this: TBase] implements NegSig<Eval&Print> inherits base = {
(Neg e).eval = -e.eval;
(Neg e).print = "-(" ++ e.print ++ ")";
b
fam = new familyNeg @AddSig<Eval&Print> (familyEval,familyPrint)
: AddSig<Eval&Print> & NegSig<Eval&Print>;

By applying familyNeg to (familyEval, familyPrint), we dynamically create a trait that inherits
from the latter. Of course, we can choose other traits as a base trait at run time, which is supported
by dynamic inheritance in CP.

Note that in Section 2.4, FamilyEval, FamilyPrint, and FamilyNeg have a statically fixed inher-
itance hierarchy. As a result, the negation expression cannot be separated from the other two
expressions because FamilyNeg is a subclass of FamilyPrint. In contrast, the inheritance hierar-
chy can be dynamically determined in CP, so familyEval, familyPrint, and familyNeg can all be
individually used or composed with any other traits. In fact, CP’s solution solves a dynamic vari-
ant of the expression problem, which can be seen as the combination of the expression product
line [Lopez-Herrejon et al. 2005] and dynamic software product lines [Hallsteinsen et al. 2008].

3.5 Discussion

In this and the previous section, we have seen that both CP and JavaScript/TypeScript support
a powerful and expressive form of dynamic inheritance. However, there are some important
differences worth noting:

e CP is type-safe. While the three languages provide a high degree of flexibility, CP is the
only language which combines flexibility and type safety.

e No implicit overriding in CP. Unlike JavaScript/TypeScript, where implicit overriding is
common, CP adopts a trait model, so implicit overriding can never happen.

e Dealing with conflicts using disjoint types. In JavaScript/TypeScript, method overriding
is based on names. So even when the method or field in the superclass has a different (or
disjoint) type, overriding happens when the subclass has a method with the same name. As
we have seen, this is the source of type unsoundness in the inexact superclass problem. In
CP, methods with disjoint types can coexist in the same object. Thus, for the same situation,
CP will not override but inherit the method from the superclass.

These differences are important to obtain flexibility while preserving type safety. However, these
differences also mean that the dynamic semantics of CP needs to be different from that of Java-
Script/TypeScript. In particular, the dynamic semantics of CP has to be aware of types, since types
play a role in determining whether conflicts exist or not, and in unambiguously performing method

ACM Trans. Program. Lang. Syst.

Type-Safe Compilation of Dynamic Inheritance via Merging 21

lookup. This creates important challenges in obtaining an efficient implementation, which have
not been addressed in previous work.

4 Key Ideas of the CP Compiler

We now introduce the key ideas under the hood of the CP compiler and describe why and how
to compile CP to extensible records in general. We also discuss the major challenges that we had
to overcome. Although our implementation targets JavaScript, the design can be adapted to any
other language that supports some kind of extensible records. We refer the reader to Section 5 for a
formal description of our compilation scheme and Section 6 for the details of our implementation
targeting JavaScript.

4.1 Dunfield’s Elaboration Semantics

In previous work by Dunfield [2014] and its follow-up work by Oliveira et al. [2016], the semantics
of the merge operator is well studied. According to the non-deterministic operational semantics
given by Dunfield, a merge 48 , true may reduce to 48 or true; both are valid reductions. However,
such reductions may not preserve types. For instance, in a context like (48 , true) — 2, the merge
should reduce to an integer. Alternatively, Dunfield proposes an elaboration semantics into a target
calculus with pairs, which is also used by Oliveira et al. Within this framework, an intersection
type A & B is elaborated into a product type A X B, and a merge e; , e; is elaborated into a pair
(e1, €2). While an elaboration to pairs offers a simple model for merges, it also imposes significant
runtime overhead. We identify three limitations in previous work.

Indirect coercions. Following the elaboration model to pairs, (48 , true) — 2 should be elaborated
into (48, true).fst — 2. That is, we need to select the first element from the elaborated pair to obtain a
well-typed expression. Merges, due to their flexible nature, do not have an explicit elimination form.
Then how can we determine where to insert “.fst”? In a type-directed elaboration, we can generate
coercion functions according to subtyping judgments in the typing derivation. A rule DTypr-Sus
can be found in previous work.

DTyp-SusB ELa-SuB

T're=> A~ e T're= A w ¢
A<:Bw ¢ €1:A<:B w ¢

I're &< B w ce I'tre &< B~ e

The rule DTYP-SUB means that if a source term e is inferred to have type A and elaborated into a
target term ¢, and the subtyping judgment A <: B implies the coercion function ¢, then e can be
checked against type B and elaborated into c €. In the aforementioned example, the merge of type
Int & Bool is cast to type Int. Therefore, a coercion function should be implicitly inserted for the
subtyping relation Int & Bool <: Int. Since the latter is the first half of the former, the coercion
Ax. x.fst is inserted.

A careful reader may notice that rule DTyr-SuB does not produce (48, true).fst — 2 as we expect.
Instead, it produces ((Ax. x.fst) (48, true)) — 2, which is less efficient as it introduces a spurious
application. To fill the gap, we propose an alternative rule ELA-SUB in our work and a novel coercive
subtyping judgment, which directly coerces €, into €;. In the aforementioned example, the subtyping
relation Int & Bool <: Int will coerce (48, true) to produce the more efficient (48, true).fst. Although
we only avoid one step of beta reduction in this case, a more complicated subtyping judgment will
lead to many coercion functions composed together and introduce many spurious applications.

Linear merge lookup. A second important drawback of Dunfield’s approach is the representation of
merges as nested pairs. The merge operator composes expressions in a binary manner, so extracting

ACM Trans. Program. Lang. Syst.

22 Yaozhu Sun, Xuejing Huang, and Bruno C. d. S. Oliveira

one component from nested merges of n components requires n — 1 projections in the worst case.
For example, when adding one more element to the previous merge, 48 , true , ‘a’ for example, one
more projection must be added to the elaborated result as well: ({48, true), ‘a’).fst.fst — 2. Note
that we have simplified the coercion application from ((Ax. x.fst) o (Ax. x.fst)) ({48, true), ‘a’) to
((48, true), ‘a’).fst.fst. Compared with array access or dictionary lookup, such projections are more
expensive in terms of both code length and runtime performance.

Pairs are order-sensitive. What is worse, a representation based on pairs has another disadvantage:
unnecessary coercions are never optimized. Consider 48 , true and true , 48. These two merges
are equivalent in any context. Although they lead to a different order in the elaborated pairs,
permutation of components does not matter as long as it is consistent with the projection. For
example, (48, true).fst — 2 is the same as (true, 48).snd — 2. However, permutation can lead to
expensive coercions. To cast 48, true , ‘@’ to type Char & Int & Bool, every single component needs
to be extracted and rearranged:

let e = ((48, true), ‘a’) in ({e.snd, e.fst.fst), e.fst.snd)

Thus, it is desirable to replace nested pairs with other representations that support more efficient
merge lookup and avoid conversions between equivalent types.

4.2 Our Representation of Merges

Prologue: compiling overloaded functions. In programming languages that support function over-
loading, C++ for example, the compiler generates different names for overloaded functions. This
process is usually called name mangling. If we have a function f with two overloaded versions:

void f(int x) { ... } // f — __7Z1fi
void f(bool x) { ... } // f — __71fb

Two different names are generated based on the parameter types: the postfix i in __z1f1i is short
for int and b in __Z1fb for bool. After name mangling, the overloaded versions are disambiguated,
and the linker can easily associate each call site with a specific version.

Key idea: compiling merges to type-indexed records. When it comes to merging, the situation is
similar: a merge contains “overloaded” terms of different types. For example, the merge 48 , true
contains both an integer and a boolean value. When compiling the merge, we adopt a similar
technique to name mangling. We generate a unique name for every type, which is used to look up the
corresponding component. More specifically, a merge is compiled to a record, and the components
of the merge become its fields. For example, 48 , true will compile to {int = 48; bool = true}.
The labels in the record, which we call type indices, are generated from the type of each term. As
for nested merges, we also flatten them in one record. Instead of the nested pairs ({48, true), ‘a’),
48 , true, ‘a’ is translated into a record of three fields: {int = 48; bool = true; char = ‘a’}. The
disjointness constraint on merging ensures that the components of a merge have non-overlapping
types, hence the fields of the elaborated record are conflict-free (e.g. a merge cannot contain both
48 and 46). The idea of using labels based on types is similar to type-indexed rows [Shields and
Meijer 2001], though their type system does not involve subtyping at all.

The record design significantly reduces the cost of projections. For 48 , true , ‘a’, we would
not need to project twice to find the exact position when selecting the integer. With a single
projection, a component in an n-level merge can be extracted. Besides, record fields are order-
irrelevant, which allows us to treat permuted intersection types equivalently. Using our approach,
coercing a term from type Int & Bool & Char to type Char & Int & Bool has no cost, because the
elaborated record does not change. In other words, {int = 48; bool = true; char = ‘a’}

ACM Trans. Program. Lang. Syst.

Type-Safe Compilation of Dynamic Inheritance via Merging 23

and {char = ‘@’; int = 48; bool = true} are equivalent. In CP, multi-field record types are
also represented as intersection types. For example, {f; : Int; £ : Int} is syntactic sugar for
{61 : Int} & {£; : Int}. Therefore, the order of fields in a record type does not matter either. We will
develop a comprehensive theory that accounts for type equivalence and handles all possible cases
next.

4.3 Reducing Coercions for Equivalent Types

Coercive subtyping is inevitable in CP, so the performance penalties caused by coercions cannot be
neglected. Following the line of discussion above, an important optimization that we identify is
to avoid coercions for subtyping between equivalent types, whose impact will be benchmarked
in Section 7.1. In our translation scheme, some syntactically different types are translated to the
same type index. These types that are treated equivalently after compilation are called equivalent
types (denoted by A = B). The design of equivalent types is inherently determined by the fact
that we represent merges as records. We do not need to distinguish two types after compilation if
their terms are compiled to records of exactly the same shape. The most interesting types in our
compilation scheme are:

o Top-like types [Oliveira et al. 2016], which correspond to empty records because they do not
convey any information.

o Intersection types, which correspond to multi-field records. Generally speaking, records are
order-irrelevant and contain no duplicate labels (or duplicate labels are allowed but fields
with the same label have equivalent values).

Considering the characteristics of our record-based representation, we can first derive that all
top-like types are equivalent. In addition, two intersection types are considered equivalent if and
only if they are formed using any combination of the following three criteria:

e They are permutations of the same set of types, or
e They are equivalent after deduplicating type components, or
e They are equivalent after removing top-like components.

The rules for other types are structural, ensuring that the type equivalence is a congruence.
Although we work hard to reduce the number of coercions, coercions cannot be fully eliminated.
Next, we will explain the reason why they are still necessary to CP.

4.4 Necessity of Coercions

In CP, our interpretation of subtyping is coercive [Luo et al. 2013], in contrast to the inclusive (also
called subsumptive) view of subtyping. That is, a value of a subtype is not a value of a supertype
directly, but it contains sufficient information so that it can be converted into a value of a supertype.
Such conversions are generated by subtyping derivations and are inserted by the subsumption rule
during type checking.

The need for coercive subtyping in CP mainly comes from the unambiguity constraint on merging,
for which the redundant information in expressions could be harmful. For example,

let x = 48 , true in not (x : Int , false)

can evaluate to both true and false if the boolean component in x is kept. During typing, we use
disjointness checks to ensure the static types of the components to be merged (Int and Bool in this
example) do not overlap. But the soundness of such checks is based on the assumption that any
expression’s dynamic type corresponds to its static type. That is, x : Int should contain nothing
other than an integer at run time. So we have to coerce x from {int = 48; bool = true} to a
record that only contains the integer field. With some simplification, the whole expression should

ACM Trans. Program. Lang. Syst.

24 Yaozhu Sun, Xuejing Huang, and Bruno C. d. S. Oliveira

compile to:
let x = {int = 48; bool = true} in not ({int = x.int} + {bool = false}).bool

where ++ denotes runtime record concatenation, which is a key feature of extensible records. In
summary, there is a strong correspondence between the value and its static type in CP. So we can
directly tell from the declared type how many fields the compiled record has and what the labels
are. This design resolves the issue of interaction between merging and subtyping in Section 3.1 and
is key to the type safety of dynamic trait inheritance.

Distributive subtyping. Normally, coercions are just removing redundant fields from a compiled
record. For example, we coerce x from {int = 48; bool = true} to {int = 48} in the previous
example. This is because a supertype of an intersection type consists of part of the component
types, so the compiled record of the supertype contains a subset of the original fields. However, the
situation becomes complicated in the presence of distributive subtyping. For example, a function
of type (T — Int) & (T — Bool) can be coerced to type T — Int & Bool because the former
is a subtype of the latter via distributivity. The coercion is not removing fields but merging two
functions into a single one.

Let us consider a more practical example based on the expression problem in Section 3.4. Here is
a simplified version of what happens to the constructors for numeric literals when we compose the
evaluation and pretty-printing operations:

ep={Lit=\n—>{eval =n3} 3}, {Lit =\n — { print = toString n } };
-- : { Lit: Int — Eval } & { Lit: Int — Print }

As the intersection type indicates, ep should compile to a two-field record: one field stores the
constructor for Eval and the other for Print. According to the subtyping relation, via distributivity,
it can be used as if it has type { Lit: Int — Eval&Print }:

ep.Lit 48 --> { eval = 48; print = "48" }

However, such usage expects that the compiled record from ep only has one field, whose label
corresponds to { Lit: Int — Eval&Print }. Unfortunately, as we showed before, the compiled
record actually contains two different labels from the expected one, so the subtyping does not
automatically work. That is why we need to insert a coercion here to convert the two-field record to
a new one with one single field, which is similar to the previous example of merging two functions.

Our compilation scheme is designed to avoid coercions as much as possible. The aforementioned
coercion is not inserted for direct usage of record projections or function applications. Instead, the
compiled code will select the two functions from the two fields for ep.Lit and apply both to 48.
The results are then combined into a record so that both eval and print fields are present.

4.5 Implementation in JavaScript

The extensible records that we have been mentioning are an abstract data type that supports
construction, concatenation, and projection. They do not imply any concrete data structure in any
particular programming language. They can be implemented as hash tables, binary search trees, or
even association lists, and most mainstream languages have built-in and highly optimized support
for these data structures. In our implementation, extensible records are implemented as JavaScript
objects, whose underlying data structure still varies among JavaScript engines. Nevertheless, one
thing we are certain of is that accessing properties of an object, which corresponds to record
projection in our terminology, is highly optimized in the various engines.

The CP compiler supports modular type checking and separate compilation. In other words,
compiling a CP file does not require access to the source code of the libraries that it depends on. What

ACM Trans. Program. Lang. Syst.

Type-Safe Compilation of Dynamic Inheritance via Merging 25

is needed is only the header files of the libraries, which mainly contain type information. Separate
compilation largely decreases the rebuilding time since it avoids recompiling its dependencies, and
it allows closed-source distribution of libraries. More details about the implementation of separate
compilation can be found in Section 6.6.

Type indices. In our implementation, type indices are represented by JavaScript strings (here-
inafter, "string" is in violet and monospaced). Below is how we represent different types:

e Primitive types are simply represented by their names, e.g. "int" for Int.

e Function types are represented by their return types, e.g. "func_int" for String — Int.

e Record types are represented by both labels and field types, e.g. "rcd_1:int" for {¢ : Int}.

e Intersection types are represented by joining the representations of their components after
alphabetical sorting, deduplication, and removal of top-like types, e.g. "(bool&int)" for
Int & Bool & T & Bool. Note that such type indices only occur when intersection types are
nested within functions or records. A top-level intersection corresponds to a multi-field
record, which has separate type indices for each component.

The representation for function types may be a bit surprising. It originates from the disjointness
rule for function types: two function types are disjoint if and only if their return types are disjoint
(rule D-ARROWARROW). This rule is derived from the specification of disjointness (Theorem 5.7),
which basically means that two disjoint types do not overlap on any meaningful types. For example,
Int — Int and Bool — Int shares a common supertype Int&Bool — Int, so these two types are
not disjoint. If those types are considered to be disjoint, we could have the following application:

((\(x: Int) —» x + 1),(\(x: Bool) — if x then 1 else 0)) (1,false)

Note that both functions can be selected, and we get either 2 or 0 depending on which function
we pick. The semantics would be ambiguous in this way. Thus, allowing such merges is unsafe.
That is why Int — Int and Bool — Int are not disjoint, and "func_int" cannot occur twice. The
disjointness checks in CP rule out the possibility of type index conflicts between two functions
in a merge. Our design that includes only return types also avoids very long property names in
JavaScript, which may lead to performance issues.

Compiling parametric polymorphism. As we have discussed previously, dynamic inheritance and
family polymorphism are already difficult to handle. In those examples, parametric polymorphism
also plays an important role, yet we have not mentioned the difficulty of compiling it. The reason
why this feature is challenging to compile is a bit more technical: it relates to when to build type
indices, namely the labels of the compiled records.

For non-polymorphic types, the labels remain fixed throughout the program execution. However,
for polymorphic types, we have to deal with type instantiation. For example, we may have a
source type { f : A — A 3}, where the type A is a type variable. After the instantiation of A, we
may have the type { f : Int — Int } or perhaps the type { f : Bool — Bool }. The problem
is that different instantiations of polymorphic type variables will produce different labels. So for
polymorphic types, the labels cannot be statically computed. To solve this problem, first-class
labels [Leijen 2004] are needed so that polymorphic instantiation can build a label at run time and
propagate the label that corresponds to the instantiated type. A more detailed explanation with
examples can be found in Section 6.2.

Important optimizations. In our implementation, we have applied several optimizations to improve
the performance of the generated JavaScript code. Besides the elimination of redundant coercions
based on equivalent types in Section 4.3, some important optimizations are:

(1) Reducing intermediate objects using destination-passing style [Shaikhha et al. 2017];

ACM Trans. Program. Lang. Syst.

26 Yaozhu Sun, Xuejing Huang, and Bruno C. d. S. Oliveira

(2) Reducing object copying by detecting whether the compiled term is part of a merge;
(3) Limiting lazy evaluation to certain trait fields to improve performance;
(4) Preventing primitive values from boxing/unboxing;

(5) Avoiding the insertion of coercions for record projections.

These optimizations will be elaborated with examples in Section 6, and their impact on performance
will be evaluated in Section 7.1. Among the five optimizations, the last one (5) is formalized.

5 Formalization of the Compilation Scheme

To demonstrate and validate the key ideas of the compilation scheme, this section introduces two
calculi for the source and the target languages, respectively, and the elaboration between them.

The source calculus is a variant of /1;’ [Bi et al. 2018; Huang et al. 2021], which mainly omits
parametric polymorphism from F;" [Bi et al. 2019; Fan et al. 2022], the core calculus for CP. Poly-
morphism is supported in our compiler, and its compilation is informally explained in Section 6.2.
We omit polymorphism here because it adds considerable complications that would distract us
from the key ideas of the compilation scheme. Furthermore, our formalization does not include
most optimizations.

The target calculus A, is a standard A-calculus that supports extensible records, which can be
regarded as a functional subset of JavaScript.

In summary, the formalization includes the key idea of compiling merges to type-indexed records,
and the following improvements:

e The use of a new coercive style that avoids modeling coercions as function terms.
e Avoiding coercions for record projections, which were needed by Fan et al. [2022].

Technical results include proofs of type safety, as well as several interesting properties about our
translation of types into record labels. All proofs are mechanically checked using the Coq proof
assistant and are available in the supplementary materials.

5.1 Target Calculus with Extensible Records

As we have emphasized, our source language CP only allows disjoint traits in trait composition.
Correspondingly, our source calculus A} enforces the disjointness constraint on merges and does
not accept records with overlapping fields. In contrast, the main characteristic of our target calculus
Ar is that it allows duplicate labels in records. When labels conflict, overriding happens, like the
design of scoped labels by Leijen [2005]. But this overriding does not affect type safety (with the
existence of subtyping) or the coherence of the elaboration semantics. This is because we only need
to consider the terms that are generated by the elaboration from our source calculus A} . Since labels
are computed from the corresponding source types of the fields, the type system of A, can require
that duplicate labels in one record must be associated with fields of equivalent types. Besides, these
fields are semantically equivalent because they originate from the same terms.

For instance, 1, 2 and even 1, 1 are forbidden in /1;’ (and our source language CP). Consequently,
the elaborated terms in A, cannot have conflicting fields like {int = 1; int = 2}. However, it is
possible, as part of evaluation, that harmless forms of duplicate fields arise, leading to duplicate
fields where the values are the same, such as {int = 1; int = 1}. We will discuss this harmless
duplication and the coherence of the elaboration semantics in Section 5.3 and Section 5.4 after
presenting both calculi and the elaboration rules.

Syntax. We use the integer type as a representative of base types. Z denotes the integer type, and
n represents any integer literal. The meta-variable p stands for record types, including the empty
record type { }. The type p extended by a field of type A with label ¢ is written as {f = A | p}.
For example, {#; = A | {& = B | {}}} is a record type with two fields and is abbreviated as

ACM Trans. Program. Lang. Syst.

Type-Safe Compilation of Dynamic Inheritance via Merging 27

(Small-step semantics)

TSTEP-PRO] TSTEP-APPL TSTEP-APPR TStEP-CONCATL TSTEP-CONCATR
€— ¢ €1 — € €—¢€ €1 — € €—> €
el — €l €16 — € € ve > ve €1+ € > €] H € Ve - vHé
TSTEP-PROJRCD TSTEP-RCD
’
lookup ¢ vy = v, €—e€
vid — vy (v tee t’ji:>ej]} S{tBv e fjl:>6j]}
TSTEP-CONCAT TSTEP-APPABS
{t; > Vii}-l—l-{l’ji:} V]’j} > {t= v,-i; = ij} (Ax.e)v > e[x > V]
lookup £ vy = v, (Label lookup on records)
lookup ¢ {f; 2 vi; ...; £ B v} = Vg iffy =tandVje 1.k-1,6 #¢

lookuptp = 8 (Label lookup on record types)

lookupt{t = A | p} > A

lookup t; {t, > A | p} = B if ¢, # ¢, and lookup ¥, p = B
lookup £ {£, = A | p} =» if ¢, # ¢, and lookup #; p =
lookup ¢ {} =»

Fig. 8. Dynamic semantics and meta-functions for A,.

{ti > A; £, = B}. In general, abbreviations {#; = A;; ...; £, = Ay} represents a multi-field
record type, and {#; = Ay; ...; &, = Ay | p} is the record type p being extended by n fields. At
the term level, records can be concatenated using ++, and e.£ extracts the first ¢ field from €. The
full syntax of A, is as follows:®

Types ABC:=Z|A—>B|p

Record types pu={}|{t=>A|p}

Expressions ex=n|x|Ax.elee|{i=me; ;e |el|e+e
Values vi=n|Ax.e|{ti = v o b= vy}

Typing contexts A= |Ax:A

Small-step semantics. The dynamic semantics of target expressions is defined at the top of Fig. 8.

For conciseness, we also use a list comprehension representation { £; = ¢; '} for multi-field records.
The evaluation is call-by-value, and record fields are eagerly evaluated. To concatenate two records,
they have to be fully reduced to values and then merged in rule TSTEp-ConcAT. For example,
{t > 1+ 1} +e€evaluatesto {f = 2; 4 = vy; ...; £, = vy}, assuming that € evaluates to
{t & vi; ...; £, & v,}. Rule TSTEP-PROJRCD uses the lookup function (lookup £ v; = v,) defined
in the middle of Fig. 8 to extract the first field with a matched label.

Type-level lookup. Besides the value-level lookup function, we define a meta-function on record
types at the bottom of Fig. 8 to reflect the behavior of field selection. It finds the first field type that

5In our Coq formalization, the bottom type and fixpoint expressions are also formalized in both source and target calculi.
We omit them in the paper to better align with A} [Bi et al. 2018], which does not support these features.

ACM Trans. Program. Lang. Syst.

28

Type equivalence

RTS-ArRrROW
RTS-REFL A~A B~ B
ACA A—->BCA -8B

‘lookupfpz.‘ﬂ Hlookupfp~.7l

Yaozhu Sun, Xuejing Huang, and Bruno C. d. S. Oliveira

A=B =2 ACBABCA
(Width subtyping)
RTS-Rcp
V¢ C, if lookup £ p, = C then lookup ¢ p; = C

p1 € p2

(Abbreviations for lookup)

lookuptp~A = FA' lookuptp = A A A ~A
lookup ¢ p ~ A V lookup?p =

lookuptp ~A =

(Context well-formedness)

WFC-Cons
WFC-NI1L A EA
k- F A, x: A
(Type well-formedness)
WEF-ARrROW WF-Rcp
WEF-N1L WE-INT A B FA Fp lookup ¢ p ~ A
F{} FZ FA— B F{t= A|p}

Fig. 9. Width subtyping, type equivalence, and well-formedness in A,.

matches the given label, just like the value-level one. We use lookup ¢ p = to represent the case
where no field in p matches 7.

Width subtyping. We define a form of width subtyping for record types at the top of Fig. 9, while
depth subtyping is not supported in A,. Intuitively, p; C p, holds if, for any projection that can
be performed on a term of py, it can also be performed on any term of p;, and their results have
equivalent types. The subtyping relation will be used after we introduce our source calculus and
its elaboration semantics in the next subsection. In the metatheory proofs, we will need to relate
record expressions to parts of their types, like {¢ = 1; ¢’ = true} to {¢ = Z}. The relation between
types and their parts is characterized by width subtyping.

Equivalence of target types. An equivalence relation ~ is derived from width subtyping to allow
permutation of record fields. lookup ¢ p ~ A is an abbreviation for the case where looking up ¢ in
p produces a type equivalent to A. A similar abbreviation lookup ¢ p ~ A additionally includes
the case where ¢ is absent in p. An important property of equivalent types is that they preserve the
results of lookup:

LEMMA 5.1 (LOOKUP ON EQUIVALENT TYPES). Given p; = p;:

e Iflookup ¢ p; = C thenlookup? p; =~ C.
e Iflookup ¢ p; = thenlookup ¢ p, =.

Type well-formedness. Well-formed types are defined at the bottom of Fig. 9. Record type extension
must be consistent: duplicate labels must be associated with equivalent field types. Specifically,

ACM Trans. Program. Lang. Syst.

Type-Safe Compilation of Dynamic Inheritance via Merging 29

(Record type concatenation)

CT-Rcp
CT-NL lookup ¢ p; ~ A p1 W py = ps3
{twp=p {teAlptYp={te A|ps}
(D
Typ-INT Typ-ABs Typ-Aprp
FA Ax:Are:B Are:A—B Are: A AxA
Avrn:Z ArAx.e: A—> 8B Aree:8B
Typ-RcDNIL Typ-RcpCons
FA Are: A Ar{ti=e; st enf:p lookup ¢ p ~ A
Ar{}:{} Ar{teeti>e; s> et {te A|p}
Typr-RCDMERGE
Typ-VAR Typ-RcDPRrOJ pP1Y p2 = p3
FA x:A el Are:p lookuptp = 8 Ave:p Atvé€:ps
Arx:A Aret:B Are +te:ps

Fig. 10. Typing of A,.

as shown by rule WF-Rcp, to safely extend type p by a new field of label ¢, either the old field
type in p is equivalent to the new field type, or p lacks label ¢. This is also enforced in the typing
rule Typ-RcpCons.

As we will explain later, every type in the source language, including an intersection type,
is translated into a record type in the target language. All the record labels are generated from
source types in the translation process, where disjoint source types are converted to distinct labels.
Although overlapping is forbidden in merges, overlapping is not forbidden in intersection types. For
example, 1, 2 is forbidden but Z & Z is a valid type in A;". Therefore, it is natural for corresponding
record types to contain duplicate labels. The properties of the source calculus also ensure that the
translated types are well-formed. With the well-formedness restriction, permuting any fields in a
record type does not affect type safety.

Typing. The typing rules of target expressions are presented in Fig. 10. A set of auxiliary rules is
defined to concatenate two record types (p; ¥ p, = p3). The premise of rule CT-RcD guarantees the
well-formedness of the result type. Given the types of two record expressions, the concatenation of
the two record types directly reveals the shape of the result of concatenating the two expressions.

In our type system, there is no subsumption rule or a rule that allows conversion between
~-equivalent types. Every expression under the given typing context has a unique type. That is,
from a record type, it is straightforward to tell the shape of its value: how many fields it has, what
the labels are, and how the fields are arranged. On the other hand, in rule Typ-Arp, the requirement
on argument type is relaxed to ~-equivalence.

Type soundness. The A, calculus is proven to be type-sound via progress and type preservation.
However, we should emphasize that type preservation (and the substitution lemma) is proven with
respect to ~-equivalence.

THEOREM 5.2 (PROGRESS). If- + € : A, then either € is a value or Ae’, € — €.

ACM Trans. Program. Lang. Syst.

30 Yaozhu Sun, Xuejing Huang, and Bruno C. d. S. Oliveira

1A7 (Top-like types)
TL-AND TL-ARrROW TL-Rcp
TL-Tor 14T 1B 157 157
17T 1A& B[1A — B[1{e: B}
(Type disjointness)
D-Symm D-TorL D-AnDL
Bx A 1AT A B A, + B D-INTARROW D-INTRCD
AxB AxB A& Ay« B ZxAl — A, ZxA{t: A}
D-ARROWARROW D-RcpEg D-RcpNEQ
Ap * By AxB bt b D-ARROWRCD
Ay —> Ay % B; — By {t: A} = {¢:B} {t; : A} = {t, : B} A > Ay = {t: A}

Fig. 11. Top-like types and type disjointness in A;}.

LEMMA 5.3 (SUBSTITUTION PRESERVES TYPING). IfA,x : AN Fe: BandA+vr € : A and
A’ ~ A, then3 B’ such that A,N" + e[x+— €] : B and B’ =~ B.

THEOREM 5.4 (TYPE PRESERVATION). If -+ e: A ande — €', thenAA’, -+ €' : A’ and A’ = A.

5.2 Source Calculus and Elaboration

The source calculus is a variant of A7 [Bi et al. 2018; Huang et al. 2021]. It includes type T, the
maximal element in subtyping, as well as its canonical value T. Functions (Ax. e : A — B) always
have type annotations. {£ = e} stands for single-field records, which has type {¢ : A} if e has type
A. The full syntax of A} is as follows:

Types ABC:=T|Z|A—>B|{t:A}|A&B
Expressions ex=T|n|x|Ax.e:A—> Bleje|{f=¢}|el|e,e]e:A
Merge operator and disjoint intersection types. The symmetric merge operator (,) is like record
concatenation, with which we can construct multi-field records from single-field records. However,
it is not restricted to records: as long as two expressions have disjoint types (i.e. they are thought to

be compatible), e; , e, is allowed, containing the information of both expressions. Assuming that e,
and e, have type A and B respectively, the whole merge has intersection type A & B.

{ti Ay b Ay 2 {6 A& &{l: An}
{[1 = e, ...;{nzen} = {fl zel},...,{t’nzen}
Top-like types and disjointness. Fig. 11 defines two relations. They follow the specifications in
previous work on disjoint intersection types [Huang et al. 2021], which are defined in terms of

coercive subtyping (€1 : A <: B ~» €;) in Fig. 15. Since we only need to consider the relation on
types, here we use A <: B to represent the subtyping relation, ignoring the terms ¢; and €.

THEOREM 5.5 (COERCION-ERASED SUBTYPING). A <: B ifand only ifVe;, ez, €1 : A <: B ~» €.

At the top of Fig. 11 is the algorithmic definition of top-like types (] A[). It characterizes types
that are equivalent to T, including any function type with a top-like return type, and any record
type with a top-like field type. These types are thought to be vacuous and treated in a unified way.

THEOREM 5.6 (TOP-LIKE TYPES RESPECT THE SPECIFICATION). |A[if and only if T <: A.

ACM Trans. Program. Lang. Syst.

Type-Safe Compilation of Dynamic Inheritance via Merging 31

Type indices T :=Z|Ts— Ts|{¢: Ts}
List of type indices Ts o= [Ty, ..., Ty]

(Translation to type indices) Al =p (Translation to target types)
A= i 14T Al = {} if 147
1z| =(Z] 1zl ={Z = 2z}

|A— B| =[|A| — |B]] if not B[lA— Bl ={|Al = |Bl = ||All = [IBll} ifnot B[
{e: A =[{¢: |Al}] if not JA[I{¢ : Al ={{¢: |Al} = ||All} if not TA[
|A& B| = dedup (merge |A| |B|) A& Bl =p if |All W IBll = p

Fig. 12. Translation functions for types in A}.

At the bottom of Fig. 11 is the algorithmic definition of disjointness. We say two types are disjoint
(A * B) if they do not overlap on any meaningful types; or, any common supertypes they share are
top-like. Irrelevant types are considered disjoint, such as integer and function types, or records
with different labels. Function types are disjoint if and only if their return types are disjoint. Two
record types with the same label are disjoint if and only if their field types are disjoint.

THEOREM 5.7 (TYPE DISJOINTNESS RESPECTS THE SPECIFICATION). Ax* B ifand only ifVC, if A <: C
and B <: C then |CJ.

Type indices and translation functions. Merges in A are elaborated into records in A,. Each
component is tagged by a label, which we call a type index. Type indices are computed from the
component types of an intersection. Defined in Fig. 12, the translation function | - | maps a type to
a list of type indices Ts. For types that are neither a top-like nor an intersection type, the result
is a singleton list. Values of top-like types are thought to contain no information, so these types
are omitted in translation, i.e. they are converted into an empty list []. These lists are merged
in the case of intersection types: merge is a merge sort, taking two sorted lists and producing
a merged sorted list. Then we remove duplicates from the result list using dedup. For example,

Z&(Z — Z)&Z & (T — T) is translated to [Z,Z — Z]. The list only contains the type indices
for the first two elements of the intersection type because the third element is a duplicate of the
first one and the last element is a top-like type. We use an injective function to map each type
index to a unique string in Coq, and we use the alphabetical order of their corresponding strings to
sort type indices.

LEMMA 5.8 (TRANSLATION). The mapping from type indices to strings has the following properties:
o If|A; — Bi| =|A; — By| then |A1| = |Az| and |B:| = |Bz|, given that A; — By and A, — B,
are not top-like.
o Ifl{t1 : A1} = {& : As}| then by = €, and |A;1| = |Az|, given that {; : A1} and {&, : A,} are
not top-like.

To the right of the type-index translation function, there is another function || - || that maps
source types to target types. It uses the record type concatenation defined in Fig. 10. The function
is based on the design of elaboration, which we will introduce later (presented in Fig. 14). It reflects
the type of the elaborated target term. The result of translation is always a record type: all top-like
types are converted to the empty record type; converting an intersection type is concatenating

ACM Trans. Program. Lang. Syst.

32 Yaozhu Sun, Xuejing Huang, and Bruno C. d. S. Oliveira

Type equivalence A=B %= ACBABCA

(Width subtyping)

RS-Tor RS-ArRrROW RS-Rcp RS-ANDL1
RS-INT 18[A =B, A, =B, A=B A E A
ZCZ ALCB A1—>A2;B1—>B2 {[A}E{[B} Al&A2;A3
RS-ANDL2 RS-ANDR
Ay C As A C A A; C As
A1 & A, T As Al C A &As

Fig. 13. Width subtyping in A}.

their counterparts. For the remaining types, the translation is a record type tagged by the type
index associated with the type itself. Only when two field types are ~-equivalent, they can have
the same type index. While our typing rules use the type-index translation function | - |, the type
translation function || - || only serves the purpose of proving metatheory properties.

Equivalence of source types. Corresponding to the ~-equivalence on target types, = defines an
equivalence relation on source types. Likewise, it is derived from a preorder (A E B), which is the
width subtyping in the source calculus. Note that it is not the subtyping used in the type system, but
rather an auxiliary relation defined to better characterize the invariant of the type index translation.
As defined in Fig. 13, this preorder relation is stricter than the coercive subtyping used in our source
type system (presented in Fig. 15). An intersection type can be intuitively understood as a set of
distinct types. For example, the intersection type Bool & Char & (Int — Int) represents a set of
three distinct elements: Bool, Char, and Int — Int. Its width subtype must contain all these three
elements. Generally speaking, all component types in an intersection must be present in its width
subtype, excluding duplicates and top-like types. The =-equivalence groups types that map to the
same type index.

LEMMA 5.9 (EQUIVALENT TYPES). Some properties of the =-equivalence can be derived from proper-
ties of width subtyping:
e Iflookup? ||A|| = C; andlookup ? ||B|| = C, thenC; € C,. Thus, by symmetry, iflookup ¢ ||A|| =
C; andlookup ¢ ||B|| = C, then C; = C.
e A C Bifand only if all components of | B| can be found in |A|. Thus, by symmetry, A = B if and
only if |A| = |B].
o IfAC Bthen| Al C ||B||. Thus, by symmetry, if A = B then ||A|| = ||B]|.

The first one is a strong result about type translation: in a translated type, the type of a record
field can be determined by its associated label. Hence, for any two translated types ||Al| and || B||,
looking up the same label ¢ will lead to equivalent types C; and C;. For example, looking up an
integer label Z should always return an integer type Z. With the above properties, we can prove
that all translated types are well-formed.

LEMMA 5.10 (WELL-FORMEDNESS OF TRANSLATED TYPES). VA, + || A]l.

Type-directed elaboration. Defined in Fig. 14,T + e & A ~» € relates a source expression e to
a source type A under the typing context I and the typing mode &, and the typing derivation

ACM Trans. Program. Lang. Syst.

Type-Safe Compilation of Dynamic Inheritance via Merging

33
Typing contexts Fue=-|Lx:A
Typing modes ==
(Type-directed elaboration)
Era-ToPA
Era-Top LA-TOPABS

ELa-TorRcD
1Bl T're= A~ e T1AT

Tr{t=e} = {£: A} w {}

TFT=Tw {} l'tAx.e:A—>B= A— B~ {}

FLA-INT ELA-VAR
LA-IN x:AeTl
Trn=Zw {Z=n} Trx = A~ x
ELA-ABs ELa-SuB
—1B[T're > A w ¢
I'x:A+te & B w ¢ €1:A<:Bw ¢

T'tAx.e:A—> B = A— B {|[A— B| = Ax.¢} I'te & Bw g
Era-App

T'teg > A w g I'te, > B w 6

Era-Rcp
€:Aee:B e C

—1A[I'tre= A~ e
Tr{t=e} = {t:A} ~ {|{t: A} = €}

Theeg = C e

ELA-Proj ELA-MERGE

F're=> A w ¢ Tre = A w ¢ ErLA-ANNO
€1:Ae{f}w ¢:B F'rte, = Bw g AxB [rees= Awe
I'rel = Bw e

I're,eg0 > A&B v €1 +H ¢

T'rte:A=> Aw e
eleer:BquC‘

(Distributive application)
A-Top A-ARROW
147

_|-|B|— €:C<tA v g

€1:Aee:Bw {}:T

€:A—> Bee:C w (61.|A—)B|)63:B
A-AND
—~]A&B[

€1:Aee:C w e A €1:Bee:C > ¢g:B

€:A&Be e :C > e3++e,: A &B

‘EllAO{f}'Vv)Eg,:C‘
P-Tor

(Distributive projection)
P-RcpEgQ P-RCcDNEQ
1A[—1AT -1AT a6
er:Ae{t}~ {}:T e:{t:A} o {t} » e |{:A}|: A €:{t: A} o {f}~ {}:T

P-AnD
-]A&B[
€1ZA.{{7}’V\’> EZZA’
€ :Be{f}w e:B

€1 :A&B e {t}w e +te;: A &B
Fig. 14. Type-directed elaboration of ;.

ACM Trans. Program. Lang. Syst.

34 Yaozhu Sun, Xuejing Huang, and Bruno C. d. S. Oliveira

Ordinary types A°B°,C° = T|Z|A— B°|{t:A"}
(Coercive subtyping)
S-Top
o S-INT
1B°T
€:A<:B° w {} €:Z<:Z ~ {Z=eZ}
S-ARrROW
—1B5[x:By <t A w g S-ANDL
(e.]A1 = Ay]) €1 : Ay <: B] > € €:A<C° w €
€:A; = Ay <: By > By w {|B; = Bj| Ax. &3} €:A&B<:C° » €
S-Rep S-ANDR
-1B°T el{t:A}:A<:B° w g €:B<:C° ~ €
e:{t: A} <:{t:B°} ~ {|{t:B°} = &} €:A&B<:C° w ¢
S-SpLiT
B, < B> By €:A<: B w ¢ €:A<: B, » € €:B > B<ée:B w6

€:A<:B w ¢

Fig. 15. Coercive subtyping in A}.

generates a target expression € from e. The type system is bidirectional [Dunfield and Krishnaswami
2021; Pierce and Turner 2000]: under the inference mode (=), A is generated as an output; under
the checking mode (<), A is given as an input. Given the typing context, every well-typed e has a
unique inferred type; all the types that e can be checked against are supertypes of this inferred
type.

Rule ELa-MERGE is the signature rule of calculi with disjoint intersection types. The disjointness
restriction on types (A = B, defined in Fig. 11) prevents the overlapping of components in a merge.
Thus, in a well-typed term like e, , ..., e,, every subterm in the merge has disjoint types. Rule ELA-
AnNo allows upcasting expressions to any supertypes. The subtyping relation is checked in rule Era-
SuB via the subtyping judgment ¢; : A <: B ~» ¢;, which also coerces the target term €; to ;.
Rule ELa-Arp relies on distributive application, which is defined in the middle of Fig. 14. It takes the
function type A and the argument type B and, if A can be applied to B, produces the return type C.
Distributive application additionally allows intersection types and top-like types (can be regarded
as 0-ary intersections) to be applicable due to the distributivity of functions over intersections.
For example, (A; — Bj) & (A, — B;) can be applied to A; & A, and produces B; & B;. Besides,
€1:A ® e : B~ e3: Cuses €1 and €, to generate the target term e, reflecting the application in
the target language. Similarly, rule ELA-Proj relies on distributive projection to obtain the result
type. Given a label ¢, the relation €; : A ® {f} ~» ¢, : B finds all field types in A that match ¢ and
returns them as an intersection type B, if there is more than one matched field. Similarly, €, is the
target expression that extracts the corresponding fields in ;.

Rules ELa-Top, ELa-ToPABs, and ELa-ToPRcD generate an empty record for top-like types, which
is a counterpart of the canonical top value. For non-top-like types, rules ELA-INT, ELA-ABS, and
Era-Rcp produces records with a single label translated from the type directly. Consequently, all
elaborated terms are either reducible or are in a record form.

ACM Trans. Program. Lang. Syst.

Type-Safe Compilation of Dynamic Inheritance via Merging 35

(Type splitting)

Sp-ARROW Sp-Rcp
Sp-AND B, <« B> B, By <« B> B,
A< A&Br B A—> B <«<A—>Bpr A—> B, {t:B;} < {¢:B} > {t:By}
€:A> C<e:Bw e‘ (Coercive merging)
M-Tor M-AND
cr A< Cr B -]A& B[
612A1>C<IEZZB'VV>{} €1:AD> A&B < € :B v € +6
M-ARROW

1Bl =1Be[
(€1.]/A— Bi])x: By > B < (e.|A— By|) x: By » ¢

€:A—> B >A—>Bdée:A— B w {|A— B = Ax.€}

M-ARROWL
=1Bi[1B
(61.]/A—> Bi])x:By > B {}:By » ¢

€:A—> B >A—>B<deg:A—> B w {|A— B> Ax.€}

M-ARROWR
1B:] =By [
{}:B; > B< (&.]JA— By])x: By w» ¢

€:A—> B > A—>B<e:A—> B w {|A— B> Ax.€}

M-Rcp
1Al 1A
61.|{f!A1}| A > ACQ €2.|{[2A2}| Ay o€

er:{t: A} > {{: A} < e :{t: A} » {|{t: A} = €}

M-RcpL
1Al 1A
61.|{[5A1}|5A1>A4{}5A2’V\/)6

er:{t: A} > {{: A} < e :{t: A} w {|{t: A} = €}

M-RcpR
1Al 1A
{}IA1 > A< 62.|{[:A2}| 1Ay €

e1:{t: A} > {L: A} < e :{t: A} » {|{{: A} = ¢}

Fig. 16. Type splitting and coercive merging in A7 .

Coercive subtyping. Defined in Fig. 15, ¢; : A <: B ~» ¢, takes a target expression €; and
two source types A and B and produces a target term e;. Intuitively, when €; has type || A]|, the
generated e; will have a type that is equivalent to ||B||. The formal theorem will be given later
(Theorem 5.11) when establishing type soundness. Besides producing the coerced target term,
this relation also checks whether A is a subtype of B. For coercive subtyping, a more common
form of the judgment is A <: B ~» ¢, where c is a coercion function in the target language with
type ||A|| — ||B||. Instead of generating a coercion function, we directly transform the term. The

ACM Trans. Program. Lang. Syst.

36 Yaozhu Sun, Xuejing Huang, and Bruno C. d. S. Oliveira

main motivation behind our design is to generate more efficient terms: €, can be understood as a
simplified result of the application ¢ €;. By adopting this technique, we aim to skip some reduction
steps, ultimately improving the performance of code that relies on coercions. This idea has been
discussed in Section 4.1, and it is further optimized in Section 6.4.

To understand the subtyping check, we can ignore €, and €;. In our formulation of subtyping,
type constructors like arrows and records distribute over intersections, e.g. A — B& C is equivalent
to (A — B) & (A — C). Such distributivity first appeared in the system proposed by Barendregt
et al. [1983] and is supported by A} and F;". We follow the subtyping algorithm design in A} [Huang
et al. 2021]. It distinguishes types that have a form equivalent to intersection types from others.
Such types are called splittable types and can be separated into two via type splitting, which is
defined in Fig. 16. For example, A - B < A —» B& C > A — C represents that A —» B& C'is
equivalent to the intersection of A — Band A — C. The notation A° stands for types that are not
splittable, which are called ordinary types.

In type splitting, the two split types are outputs. However, they are then used as inputs in the
coercive merging judgment €; : A > C < € : B w» ¢, as defined in Fig. 16. If we omit €; and
€; in this judgment, coercive merging characterizes the same relation as type splitting. In other
words, removing B; <« B > B, from rule S-SpLIT does not change the idea of subtyping. We retain
it to better represent the information flow in the subtyping algorithm: in rule S-Spr1T, after being
generated from type splitting, B; and B are used to coerce the same term e individually, and the
coerced results e; and e, are merged back, guided by the types. Note that, in this process, it is
possible to duplicate terms and lead to duplicate labels in the corresponding target record terms.

Soundness of elaboration. The semantics of our source calculus is given via an elaboration, which
reflects the compilation of CP. We establish our type-safety proofs on (1) the type safety of our target
calculus, and (2) the soundness of elaboration, which connects the source calculus to the target
calculus. Specifically, for every well-typed source expression, the typing derivation produces a target
term, and we prove that the target term is well-typed in the record calculus. In addition, its type is
equivalent to the translated type of the original source expression. The soundness of elaboration is
based on the soundness of coercive subtyping, distributive application, and distributive projection,
which guarantee that the terms generated from these judgments have the desired types. Note that
the premises of these soundness lemmas are coarser than their conclusion: the actual type of the
input term does not have to be equivalent to the annotated type. For example, in €; : A <: B ~» ¢,
€1 only needs to have a subtype of || A| for €, to be correctly typed. This is because, in these coercive
relations, the input terms are always used for projection (e.g. in rules S-ArRrROW and S-Rcp) but
never for concatenation. As long as the input terms have sufficient fields, other fields that they
have are unimportant.

THEOREM 5.11 (ELABORATION SOUNDNESS). We have that:
e Ifer:A<:B~w g andAv e : Aand A C ||Al|, thenAB, A+ e, : B and B =~ || B]|.
e lfe;:Aee:Bw e3:CandAre : Aand A C||A|| andA+ e;: B and B C ||B||, then
AC,Ar e :CandC = ||C|.
o Ifer: Ae{f} »> e:BandA+ € : Aand A C ||Al|, thenIAB, A+ €, : B and B ~ ||B]|.
e [fTte © A~ ethendA,|T'|Fe: Aand A =~ ||A].

5.3 Duplicates in Translation and Coherence of Subtyping

With the disjointness constraint enforced in rule ELA-MERGE, all elaborated records originating from
that rule have distinct labels. However, we still have to take duplicates into account because they can
be generated by coercive subtyping. For example, € : Z <: Z& Z ~» € ++ € duplicates €. Note that
given €1, A, and B, there could be more than a single possible €,, generated by different derivations

ACM Trans. Program. Lang. Syst.

Type-Safe Compilation of Dynamic Inheritance via Merging 37

of subtyping €; : A <: B ~» ¢;. Therefore, it is possible to have ¢; : A <: B&B ~» €+ €3
where €, and €5 are different. In the proof of Theorem 5.11, we show such results do not violate
type well-formedness: €; and €3 have equivalent types. Moreover, we conjecture that €, and €3
have the same behavior, since similar results have been proven in the past (semantic coherence
or determinism) for variants of A7 [Bi et al. 2018; Huang et al. 2021]. Because the disjointness
restriction in rule ELA-MERGE ensures that semantically different terms with equivalent types
cannot be introduced into one merge, it is sufficient to distinguish terms by the type indices.

Past coherence results. The technical reason for our coercive subtyping not producing a unique
result is that we allow types like A; & A; even if a non-top-like type B exists such that A; <: B and
Ay <: Bboth hold, leading to two different subtyping derivation paths for A; & A; <: B. One way to
ensure the uniqueness of coercions, as utilized by previous work, is to reject such intersection types
via a disjointness constraint in type well-formedness [Alpuim et al. 2017]. If intersection types are
restricted in this way, we do not even need to worry about duplicates at all. However, unrestricted
intersection types are more expressive and are required when encoding bounded polymorphism [Xie
et al. 2020]. Moreover, imposing a disjoint constraint on all intersections significantly complicates
the proof of type soundness [Alpuim et al. 2017]. That is why all subsequent work [Bi et al. 2018,
2019; Fan et al. 2022; Huang et al. 2021], besides ours, relaxed the restriction on intersections.

For our source calculus to be coherent, it is necessary to ensure that all the coercions generated
from the same subtyping judgment are equivalent. Proving this property is challenging, especially
considering the main focus we had when designing the formal calculi is to justify the usefulness of
the compilation, for which the efficiency is more important. In other words, many design choices
in the formalization are driven by efficiency considerations, rather than by considerations for
making a proof of coherence easier. For instance, we use a novel and non-standard form of coercive
subtyping, which sacrifices the ability to do induction on the coercion structure. Nevertheless, the
coherence of the subtyping relation in previous work (and the determinism of the casting semantics
implied by subtyping) has already been proven [Bi et al. 2018; Huang et al. 2021]. Although our
setting differs slightly due to our use of a different target language, the previous results about
coherence provide us confidence that the elaboration here is also coherent.

Determinism in a direct operational semantics. Huang et al.’s variant of A} uses a direct operational
semantics where annotations trigger subtyping checks and act as upcasts at run time, directly
manipulating source values. The upcasting process mirrors the approach of algorithmic subtyping,
which is similar to how coercions are generated in our subtyping judgments. For instance, the
expression 1 : Int & Int evaluates to 1, 1. When an integer is expected, either component can be
selected. This type system permits duplicate components in merges. The operational semantics of
this variant has been proven to be deterministic and type-safe, providing evidence that no ambiguity
arises from subtyping when using disjoint merges.

Coherence for an elaboration semantics. Closer to our work, Bi et al.’s variant of /1:', also known
as NeColus, employs an elaboration semantics that is proven to be coherent. The NeColus calculus
covers the same set of expressions as our source calculus and also features a syntax-directed bidi-
rectional type system. It uses a different algorithm to decide subtyping, and provides a formulation
in declarative style, which is equivalent to ours (see Huang et al.’s work for a formalization of this
result). Most of the typing rules are also the same as ours, including the rule for merges and the
subsumption rule. The rules for lambda abstraction, application, and record projection are slightly
different in terms of requiring more or fewer type annotations, and NeColus does not have the
separate relations for distributive application and projection.

ACM Trans. Program. Lang. Syst.

38 Yaozhu Sun, Xuejing Huang, and Bruno C. d. S. Oliveira

The main difference between Bi et al.’s elaboration and ours, is that the target language for
NeColus is a different calculus called A.. A, is a variant of the simply typed A-calculus extended
with records, products, and explicit coercions. In NeColus, merges are translated into pairs. For
example, 1, true is translated into (1, true). In the coherence theorem, Bi et al. prove that such
elaboration always leads to equivalent terms in the target language. Their proofs show that the
duplication that arises in coercive subtyping does not cause ambiguity in the target language.

Before discussing the coherence proof, let us compare the two elaboration frameworks with
some examples. Both A, and our A, only include the integer type Z as a representative of primitive
types, but we will use Bool and Int in our examples for demonstration. Besides, we replace the
coercions in A, by lambda terms and simplify all the elaboration results for easier comparison.
Furthermore, we include JavaScript code to show the same situation in the code generated by our
compiler.

Example 1. Consider the source expression:
1:Int&Int: Int
The translation to A, is unique:
{|Int| = {|Int| = 1; |Int| = 1}.|Int|}
The translation to A, has multiple possibilities, including:
(Ax. x.fst) (1, 1) (Ax. x.snd) (1,1)

This example illustrates a challenging situation that involves two steps: first creating a term
corresponding to type Int & Int, and then selecting a component of type Int. In A,, the duplication
in the first step causes a label conflict, and the second step is deterministic because of the overriding
semantics; while in A, it is the second step that brings potential ambiguity. With pairs serving as
the target for merges in A., every component in merges can be identified and extracted by position.
The position information is analyzed from types during the elaboration. If the merge consists of
two terms of the same type, the two positions can be used interchangeably. Therefore, there are
two possible coercions that can upcast Int & Int to Int, namely Ax. x.fst and Ax. x.snd. Note that,
in a calculus with pairs, these two functions are clearly semantically different since they can be
applied to a pair argument like (1, 2), which would produce two different results. But the point is
that such pairs with different elements of the same type are never produced by the elaboration, so
these two coercions behave identically for the pairs that can be generated from the elaboration.

This idea applies, more generally, to types with the same type index in our elaboration, and
not just syntactically equal types. Types with the same type index are mutual subtypes and can
interchange with each other in subtyping derivation. Another observation from this example is
that, whenever there is an overriding in A,, there will be multiple possibilities in the translation to
Ae.

Finally, the compiled JavaScript code (without optimization) is as follows:

const $1 = {}; $1.int = 1; $1.int = 1;
const $2 = {}; $2.int = $1.int;

The JavaScript code generated by our compiler shares the same overriding semantics as A,: $1.int is
assigned twice, and the second assignment overrides the first one. Note that we have implemented
several optimizations in our compiler, including eliminating redundant coercions, so the actual
code generated by our compiler is more concise than the one shown here. Since Int & Int and
Int are equivalent types, no coercions will be inserted in the optimized code. We keep the code

ACM Trans. Program. Lang. Syst.

Type-Safe Compilation of Dynamic Inheritance via Merging 39

unoptimized here to better illustrate the correspondence between the JavaScript code and the A,
term.

Example 2. Consider another source expression:
(Af: f) : (Int — Int) & (Int — Int & Bool) — Int — Int

This time the translation to A, has two possibilities. Here we use A to denote the type (Int —
Int) & (Int — Int & Bool) — Int — Int:

{|A] ® Af{|Int — Int| = Ax. {|Int| = ((f.|Int — Int|) {|Int| = x.|Int|}).|Int|}}}
{|A] ® Af {|Int — Int| = Ax. {|Int| = ((f.|Int — Int & Bool|) {|Int| = x.|Int|}).|Int|}}}

The two possibilities correspond to the translation to A, as follows:®
Af Ax. ffstx Af. Ax. (f-snd x).fst

This is a case where A, has multiple syntactically different translation results. The higher-order
function expects a parameter f, which is a record in A, that has two fields with label |Int — Int|
and label |Int — Int & Bool|. These two type indices are different, but the two types are not disjoint.
Therefore, if their common supertype is desired in a source context, both fields can be selected. For
the purpose of coherence, the two results originating from both sides should behave the same; that is
to say, they should have equivalent semantics for the overlapping part of their types (i.e. Int — Int).
This is also needed for A.: the two translated terms should only apply to a pair of functions that
have the same behavior, if we only consider the integer part in their return results. Because of
disjointness, the only way to create a term with type (Int — Int) & (Int — Int & Bool) is using one
lambda abstraction, such as (Ax. x, true) : Int — Int & Bool : (Int — Int) & (Int — Int & Bool).
It does not type-check to use a merge of two functions with types Int — Int and Int — Int & Bool
as these two types are not disjoint. Therefore, the function that can be selected by the multiple
coercions is the same function, which was just duplicated twice.
The compilation to JavaScript may have two possible versions as well:

const $1 = {3; const $1 = {};
$1.fun_fun_int = function ($f) { $1.fun_fun_int = function ($f) {
const $2 = {}; const $2 = {};
$2.fun_int = function ($3) { $2.fun_int = function ($3) {
const $4 = {3}; const $4 = {};
$4.int = $3.int; $4.int = $3.int;
const $5 = $f.fun_int($4); const $5 = $f['fun_(bool&int)']($4);
const $6 = {}; const $6 = {};
$6.int = $5.1int; $6.int = $5.int;
return $6; return $6;
b b
return $2; return $2;
I b

Note that the only difference is the value of $5: one is created by applying $f.fun_int and the
other by applying $f['fun_(bool&int)'] (n.b. $f.fun_(bool&int) does not work because the label

®The A, terms look much simpler because they are derived from declarative subtyping for brevity. If we derive the coercions
from algorithmic subtyping, the terms will be more complicated:

Ax1. (Ax2. (Axs. Axq. (33 x4)) ((Axs. x5.5t) X%2)) x1
Axy. (Axz. (Axg. Axs. ((Axg. x6.fst) (x4 x5))) ((Ax7. x7.5nd) x2)) %1

ACM Trans. Program. Lang. Syst.

40 Yaozhu Sun, Xuejing Huang, and Bruno C. d. S. Oliveira

contains special characters). The two versions will behave identically, so it does not matter which
one is actually generated. Similarly to the situation in A,, as long as the CP code is well-typed and
is compiled to JavaScript by our compiler, $f. fun_int and $f[' fun_(bool&int) '] originate from
the same function and behave the same as only the integer part of the return value (i.e. $5.1int) is
used. Again, the JavaScript code is deliberately kept unoptimized to show the correspondence with
the A, terms. In the optimized code for the first version, for instance, the creation of $4 and $6 can
be eliminated.

5.4 Coherence Proof for NeColus and Its Adaptation to Our Source Language

The coherence result in NeColus is established using a semantic approach based on logical rela-
tions [Biernacki and Polesiuk 2015; Tait 1967]. Here we provide a summary of the key steps in that
coherence proof. We will use E, V, 7, and A to represent the expressions, values, types, and typing
contexts in A, the target language for NeColus.

Coherence via contextual equivalence. The coherence theorem proven for NeColus is as follows:
THEOREM 5.12 (COHERENCE OF NECoLUS). IfT e & AthenT F e~y e : A.

Here e is a source expression, so it is to say that a well-typed source expression is contextually
equivalent to itself. The notation < stands for both bidirectional typing modes, namely inference
(=) and checking (<). Contextual equivalence is defined as:

DEFINITION 5.13 (CONTEXTUAL EQUIVALENCE IN NECoOLUS). T+ e; ~y eyt A =
VE1E;CD, ifT+eg & A~ EjandT ey @ Aw EyandC: (T o A) - (o Z) D
then D[E;] ~ D[E,].

The intuition behind the definition is that two elaborated terms (E; and E;) should be considered
equivalent if, for any well-typed contexts (that could be generated during the elaboration), plugging
either of them in makes no difference to the final evaluation result. Here C and D stand for source
and target expression contexts, respectively. An expression context is an expression that contains
a hole [-]. The typing judgment for contexts C : (I' & A) — (- © Z) ~» D means that, given
any well-typed NeColus expressionI' e & A, we have - + C[e] & Z, and the source context C
corresponds to a target context D in elaboration, which, similarly, make D[E;] and D[E;] have
type Z. In this definition, ~ stands for Kleene equality. That is to say, D[E;] and D[E;] evaluate to
the same integer. Here the definition intentionally excludes the contexts that cannot be obtained
from a well-typed NeColus expression. For example, the source expression (Ax.x) : Z&Z — Z
can be elaborated into Ax. x.fst or Ax. x.snd. To judge whether they have the same contribution
to computation, we should not consider the target expression context [-](1, 2), that is, applying
the elaborated function to (1, 2), because its corresponding source term violates the disjointness
restriction and thus is not well-typed.

Heterogeneous logical relations. NeColus introduces two heterogeneous logical relations that
relates values and terms, respectively, in the target language A., as shown in Fig. 17. The logical
relation is designed to capture the intuition of coherent expressions — those that are safe to coexist
in pairs, as they are unambiguous in every valid context.

First, V[r1; 72]| relates all duplicate values. For example, (1,1) € V[Z; Z] because it never leads
to ambiguity. Second, it is proven that all disjoint values are also related. For example, as long as
we have Z = {¢ : Z}, we also have (1,{¢ = 1}) € V[Z;{¢ : Z}]. For product types, the relation
distributes over the product constructor X. This reflects the disjointness of intersection types, that
is, A& B= Cif and only if A * C and B« C. Finally, & z;; 72]| states that E; and E, are related if they

ACM Trans. Program. Lang. Syst.

Type-Safe Compilation of Dynamic Inheritance via Merging 41

V1, V) e V[Z;Z] £ 3n, Vi =Vo=n
VM, V2) € V[r1 » 151] = 5] 2 YV, V') e V[ris o], ViV, V2 V') € E[2575
{e=Vip{e=Vo}) e V[{t:ru};{t:}] £ (Vi,V2) € V[r; 2]
((V1,V2), V3) € V[11 X 12513 (1, V3) € V[ris 3] A (Va, V3) € V12513
(V3,(V1i, V2)) € V[m3;11 X 2] (3, V1) € Vsl A (V3, Vo) € V135 12]
(V1,V3) € V[r1;12]] £ true otherwise
(EnEy) € E[11;12]] 2 3V, Vi, Ey =" Vi AE, =" Vo A (Vi, V) € V][11512]

Fig. 17. Logical relations for A (the target calculus of NeColus).

evaluate to related values. The relation is then lifted to open terms via a semantic interpretation
of typing contexts, and the logical equivalence is defined in a standard way: two open terms are
related if every pair of related closing substitutions make them related. A + E; ~,, E; : T denotes
that two well-typed expressions are logically equivalent with respect to the same typing context
and the same type.

Fundamental property. In NeColus, a fundamental property is proven, stating that any two A,
terms elaborated from the same NeColus expression are related by the logical relation. Here ||T'||
and ||A|| stand for the translation of typing contexts and types from NeColus to A,.

THEOREM 5.14 (FUNDAMENTAL PROPERTY OF NECoLUS). I[fT e & A~ E; andT + e & A~ Ey,
then ||T|| + Eq ~jog Es : [|A]l.

Note that A + E =~ E : 7 does not hold for every well-typed target E. For example, the logical
relation does not consider (1, 2). Since there is no possible elaboration (the source expression
1, 2 violates the disjoint constraint), this does not prevent the fundamental property. Actually the
limitation on coherent products helps the logical relation to accept some semantically equivalent
terms like Ax. x.fst and Ax. x.snd: they are two translations of (Ax. x) : Int & Int — Int. With the
assumption that the two integers in the pair argument are related by the logical relation, choosing
either one leads to the same result.

Soundness. Since the fundamental property has shown that different elaborations of the same
NeColus expression are logically equivalent, the remaining step is to show that logical equivalence
is sound with respect to contextual equivalence.

A compatibility lemma for coercions is proven during the establishment of the fundamental
property: if two terms are related by the logical relation, after applying a coercion to one term,
they are still related. Based on this lemma, we can prove that the logical relation is preserved by
all well-typed NeColus contexts, including the contexts that coverts a term to an integer result,
for which the logical relation implies Kleene equality. Then it is straightforward to show that the
logical relation is sound.

THEOREM 5.15 (SOUNDNESS W.R.T. CONTEXTUAL EQUIVALENCE IN NECoLus). IfT F e; & A~ Ey
andT + e; © A~ Ep and ||T|| - Ey =40 Eo : ||All, thenT + e; =i ez 1 A.

Finally, the coherence theorem follows directly from the fundamental property and the soundness
result. In other words, we can conclude that any two A, terms elaborated from the same NeColus
expression are contextually equivalent.

ACM Trans. Program. Lang. Syst.

42 Yaozhu Sun, Xuejing Huang, and Bruno C. d. S. Oliveira

(vi,v2) e W[Z;Z] £3n,vi=va=n
(vi,v2) € WA = Bi; Az = Be] 2 V(') € Vy[A Az,
(viv,v2 V') € Ev[[B1; B]

(= vih{e = n)) e W{t = Ahi{e = Ad] 2 (viow) e WALA,] ifba=6=Z
or (ATs;, & =Tsy > Ts; A &y =M)
or (I Ts;, &y ={€: Tsi} Ay ={¢: Tsp})

o= v s ta=2 b V) eW[{tie Al phB] £ {2 nhv) e W{t e ALB] A
({2 vo; o5 Ly > v}, V') € Vy[p; Bl
V. {aev; st e WIB{ie Alpl] £ (. {66 = v}) e WSB;{ti > A A
(VA B vas s b= va)) € VW[Bsp]
(v1,v2) € Vy[A; Az £ true otherwise
(e1,€) € Ev[AAL] 2 Tvive, 612"V A 271 A
(v1,v2) € Vy[As; Azl

Fig. 18. Logical relations for A, (our target calculus).

Adapting the proof to our source language: a sketch. While our compilation scheme makes some
different design choices for efficiency, it essentially shares the same principle of coherence with
NeColus. Here we provide a sketch of how to adapt the ideas from the NeColus proof to our work,
although we do not provide a full proof.

We can define two logical relations for values (Vy[A; B]) and terms (Ev[A; B]) in A,, as
presented in Fig. 18. In this definition, we relate two records if they do not cause ambiguity under
any contexts that can be elaborated from our source calculus. That is to say, for two records to be
related, any pair of fields from them, as long as their labels correspond to overlapping source types,
must have related fields. For example, relating {|Int — Int & Bool| = v;} and {|Int — Int| = v,}
in the logical relation requires v; and v; to be related. Considering a source expression context
[-] : Int — Int, it applies to both records and leads to two projections that extract v; and v,
respectively. So v; and v, should be equivalent. Besides, disjoint terms are also related. For example,
{|{t1 : A}| = v1} and {|{£ : B}| = v,} correspond to two source records of type {#; : A} and type
{&, : B}. If £; = &,, their relation should be decided by the fields; if £; # £, they are always related
because of disjointness. The relation of terms can be lifted to open terms like in NeColus. We
expect the logical equivalence derived from the logical relation to be compatible with our coercive
subtyping, and a fundamental property should follow. The main rationale is that the overlapping
part must have the same origin, restricted by type disjointness. What coercions do is to decompose
and recompose the behaviors according to the types (labels). Disjoint terms will be distinguished
clearly in the process. A field of |{#; : A}|, for example, will not be used to build a field of |{£, : A}|
if 4 # . No Af context should violate the derived logical equivalence. We anticipate a similar
theorem asserting that logical equivalence implies contextual equivalence, provided that contextual
equivalence is defined in a manner analogous to NeColus. Consequently, the coherence theorem
would follow, in the style of Theorem 5.12.

ACM Trans. Program. Lang. Syst.

Type-Safe Compilation of Dynamic Inheritance via Merging 43

const $1 = { int: 48 }; const $1 = {};

const $2 = { bool: true }; $1.int = 48;

const $3 = { ...$1, ...$2 }; $1.bool = true;

const $4 = { int: 32 }; const $2 = {};

const $5 = $chr.fun_char($4); $2.int = 32;

const $6 = { ...$3, ...$5 }; $chr.fun_char($2, $1);

(a) Before optimization: 6 objects. (b) After optimization: 2 objects.

Fig. 19. Simplified JavaScript code for 48 , true , chr 32.

6 Implementation Details

This section introduces our concrete implementation of the CP compiler that targets JavaScript.
The full set of compilation rules can be found in Appendix A. Our implementation is available in
the supplementary materials.

6.1 From Elaboration Semantics to JavaScript Code Generation

In the elaboration semantics presented in Section 5, we use a A-calculus with extensible records as
the target. In the actual compilation, records are modeled as JavaScript objects, and type indices are
realized as objects’ property names. For example, 48 , true compiles to { int: 48, bool: true }in
JavaScript. Besides, record concatenation can be directly represented by object merging using the
spread syntax like { ...obj1, ...obj2 }.

As we have mentioned, the formalized target language is a functional calculus, but JavaScript is
an imperative language. The mismatch in programming paradigms is an important consideration
when implementing the compilation to JavaScript. We consider two designs of target forms: one is
based on static single assignment (SSA) [Cytron et al. 1991], and the other is based on destination-
passing style (DPS) [Shaikhha et al. 2017]. We eventually choose the latter due to performance
reasons, which we will explain next.

Reducing intermediate objects. In our initial design based on the SSA form, every subterm in a
merge creates a new object in the compiled JavaScript code. Consequently, there will be too many
intermediate objects that are useless. For example, consider the merge 48 , true , chr 32, where chr
is a function that converts an integer to a character, and the compiled function has been stored
in $chr. We need to create six JavaScript objects in the SSA-based form, as shown in Fig. 19a. As
mitigation, we adopt a new design based on DPS. We just create one object for the merge (e.g. $1
in Fig. 19b) and pass the variable down to subterms to update their corresponding properties. To
further prevent the function application (e.g. chr 32) from creating any intermediate object, we add
an extra parameter when compiling all functions, including chr. The destination object (e.g. $1) is
passed to the compiled function as the last argument, and the function body will directly write to
that argument instead of creating a new object. In other words, $1 is an output parameter while $2
is an input. As a result, we reduce the creation of six objects to only two objects and avoid two
object concatenations, as shown in Fig. 19b.

6.2 Parametric Polymorphism

The compilation of polymorphic terms is not formalized in Section 5, so here we introduce our
solution in more detail. The challenge posed by parametric polymorphism is mainly because type
arguments are unknown until type application. For those terms whose types contain free variables,

ACM Trans. Program. Lang. Syst.

44 Yaozhu Sun, Xuejing Huang, and Bruno C. d. S. Oliveira

const $poly = {3};
$poly['forall_fun_(1&int)'] = function ($A, $1) {
$1["fun_' + toIndex([...$A, 'int' 1)1 = function ($x, $2) {
for (const Aelem of $A) $2[$A$elem] = $x[$A$elem];
$2.int = 48;
b
I

(@) poly = /\(A * Int). \(x: A) — x , 48.

const $3 = {}; const $4 = {};

$poly[' forall_fun_(1&int)'J(['string', 'bool' 1, $4);
const $5 = {}; $5.string = 'foo'; $5.bool = true;
$4[' fun_(bool&int&string) '1($5, $3);

(b) poly @(String & Bool) ("foo" , true).

function toIndex(tt) {

const ts = tt.sort().filter((t, i) => t ===0 || t !== ttl[i-1]);
if (ts.length === 1) return ts[0];
else return '(' + ts.join('&') + ')';

3

(c) toIndex: an auxiliary function for generating type indices at run time.

Fig. 20. Simplified JavaScript code for polymorphic terms.

we can only generate type indices at run time. For example, Fig. 20a shows the simplified JavaScript
code for the following definition in CP:

poly = /\(A * Int). \(x: A) — x , 48;

Here the notation /\(A * Int) represents a type parameter A bound by a A-function where A
is disjoint with Int. The poly function can be typed as VA * Int. A — A& Int. We employ a
de Bruijn index [de Bruijn 1972] to represent the bound variable A, so the A-function’s type index is
"forall_fun_(1&int)". In contrast, the inner A-function’s type index is more intriguing. Before we
introduce our approach, let us first see an example of applying poly:

poly @(String & Bool) ("foo" , true)

The type parameter is instantiated with an intersection type (String & Bool), and Fig. 20b shows
the simplified JavaScript code for the application. After poly is instantiated, the inner A-function
will be used with concrete type indices (e.g. "fun_(bool&int&string)") instead of something like
"fun_(A&int)". To achieve this, we pass the instantiated type as an argument to the outer A-function.
The argument is in the form of a JavaScript array, which consists of the component types in the
case of an intersection type. The array is empty for top-like types, or it is a singleton array for
non-intersection, non-top-like cases. We also predefine a toIndex function to help generate the
type index based on the runtime instantiation, whose definition is shown in Fig. 20c. The toIndex
function accepts an array of types and generates their intersection’s type index. To fit in with
the notion of equivalent types in Section 4.3, it will sort and deduplicate the component types.
Now that some type indices are dynamically generated, we have to use obj[toIndex($A)] instead

ACM Trans. Program. Lang. Syst.

Type-Safe Compilation of Dynamic Inheritance via Merging 45

const $1 = {};

$1.__defineGetter__(
const $1 = {}; 'rcd_x:int',
$1.__defineGetter__(function () {

'rcd_x:int', delete this['rcd_x:int'];
const $1 = {3}; function () { return this['rcd_x:int'] =
$1['rcd_x:int'] = return $1['rcd_y:int']; $1['rcd_y:int'];

$1['rcd_y:int']; s DK
(a) By value. (b) By thunk. (c) By memoized thunk.

Fig. 21. Simplified JavaScript code for { x = this.y }.

of obj.name directly. Such a feature is called first-class labels [Leijen 2004] and is supported in
JavaScript via computed property names with brackets. The situation in Fig. 20a is a bit more
complicated because the type of the inner A-function is A — A & Int, so the dynamically computed
type index is "fun_" + toIndex([...$A, "int" 1).

As illustrated above, the compiled code for polymorphic definitions incurs overhead due to
the dynamic computation of type indices. In mainstream languages, parametric polymorphism is
implemented via either erasure [Igarashi et al. 2001] or monomorphization [Griesemer et al. 2020].
Our compilation scheme cannot erase type information at run time, so monomorphization is a
potential direction for improving the performance of polymorphic code. We leave this for future
work.

6.3 Lazy Evaluation

In the most recent work by Fan et al. [2022], F}" is formalized as a call-by-name calculus to correctly
model trait instantiation. A simple example is as follows:

type Rcd = { x: Int; y: Int };
new (trait [this: Rcd] = { x = this.y; y = 48 })

The program will not terminate if evaluated using the call-by-value strategy. That is why Fan
et al. go for a call-by-name semantics and evaluate record fields lazily. However, a naive call-by-
name implementation may evaluate the same record field more than once and cause a significant
slowdown. Even with proper memoization (call-by-need), the performance of generated code is
still not ideal as JavaScript does not support lazy evaluation natively. In our implementation, we
employ a hybrid strategy: only self-annotated trait fields are lazily evaluated, and other language
constructs including function applications are strictly evaluated. This approximates the semantics
in conventional OOP languages, which are call-by-value in terms of initializing fields and calling
methods, except for lazy fields.

To better illustrate different evaluation strategies for record fields, we show three code snippets
generated for the field { x = this.y }. Fig. 21a employs strict evaluation, but instead of non-
termination, the issue here is that the field y is not yet available, so field x is unexpectedly assigned
undefined. This issue severely limits self-references, and the code in Fig. 21a would be broken. Thus
we need a better approach. Fig. 21b resolves the issue by adding a thunk. The field is wrapped in a
getter, and thus the computation of this.y is delayed until the whole record is constructed with the
field y available. But note that the getter is called every time the field is accessed. This is undesirable
as the computation in the thunk would be triggered on every access to the field. We optimize this

ACM Trans. Program. Lang. Syst.

46 Yaozhu Sun, Xuejing Huang, and Bruno C. d. S. Oliveira

€:A<*Bw g (Optimized coercive subtyping)
S-Equrv S-ANDL
A=B €:A<T Cw €
€e:A<TBw e €:A&B<*C w ¢
S-ARROW
x: B <* Al w g (E.|A1 4 A2|) €1: Ay <t B, ~» €

€:A; — Ay <* By = By w» {|B; = By| = Ax. e}
Fig. 22. Selected rules for optimized coercive subtyping.

by memoizing fields using smart getters.” As shown in Fig. 21c, once the field is evaluated, the getter
is deleted, and the value is stored instead. Our implementation automatically detects self-annotated
trait fields and applies the last approach to them; for other cases, the first approach is applied. By
this means, self-references and trait instantiation in CP are correctly supported while maintaining
good performance for other language constructs.

6.4 Important Optimizations

Eliminating redundant coercions. In the rules of coercive subtyping shown in Fig. 15, even A <: A
may go through a lot of rules when A is a complex intersection type. However, as long as we
encounter subtyping between equivalent types, we do not need any coercion code. To implement
this optimization, an immediate idea would be:

e Adding a special case to rule ELA-SUB such that if A = Bthen ¢; = €.
Unfortunately, this rule does not deal with many important cases. For instance, when checking
A — B <: A — C, we would like to avoid applying coercions to the inputs of the function (since
they have the same type). Therefore, besides the rule above, we may consider:

¢ Adding an extra rule (say S-Equ1v in Fig. 22) such thatif A= Bthene: A <: B > €.

However, this idea is incorrect when an intersection type occurs on the left-hand side. For example,
when upcasting 48 , true to type Int, the coercion is missing in the subtyping derivation:

Int = Int

- - S-Equiv
{int = 48; bool = true} : Int <: Int ~» {int = 48; bool = true}

{int = 48; bool = true} : Int &Bool <: Int w» {int = 48; bool = true} S-Anel
Observing that rules S-ANDL and S-ANDR are the root cause of missing coercions, we add an extra
flag that indicates the applicability of rule S-Equiv to fix the latter idea. As shown in Fig. 22, by
default (<:*) the optimization S-EQUIV can apply, but it will be disabled (<:7) in the derivations of
rule S-ANDL (as well as rule S-ANDR), and re-enabled in derivations of rule S-ARROW (as well as
rules S-ALL and S-Rcp). In some rules, the flag does not matter, so we use <:* to mean that both
cases apply. The complete rules targeting JavaScript can be found in Appendix A.

For a simple example of the optimized code, we consider a CP function that takes a parameter of
type Int&Bool, and we pass a merge of type Bool&Int as its argument:

(\(x:Int&Bool) — x:Int) (true , 48)
The compiled JavaScript for this function application is:

"https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/get#smart_self-overwriting_lazy_getters

ACM Trans. Program. Lang. Syst.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/get#smart_self-overwriting_lazy_getters

Type-Safe Compilation of Dynamic Inheritance via Merging 47

const $1 = {3};

const $2 = {}; $2.fun_int = function ($x, $3) { $3.int = $x.int };
const $4 = {}; $4.bool = true; $4.int = 48;

$2.fun_int (%4, $1);

Although it goes through the rule A-ArRrRow to check the argument of type Bool&Int against its
supertype Int&Bool, there is no coercion inserted for $4. This is just due to the elimination of
coercions for subtyping between equivalent types (Bool & Int = Int & Bool).

Optimizing record projection. In the formalization of F;" by Fan et al. [2022], a record with more
than one label can only be projected after a coercion is inserted to remove irrelevant labels. For
example, {x = 1; y = 2}.xin CP has to be elaborated into ({x = 1},{y = 2} : {x: Int}).xin Fi*
to make the record projection work. If a similar technique is used in the CP compiler, there will
be too many coercions that lead to poor performance. This flaw is because the formalization of
F; reuses the rules of distributive application for record projection. However, the semantics for
distributive projection is slightly different: we do not require that every component of a record can
be projected by the same label. Therefore, we add rule JP-RcDNEQ to safely ignore irrelevant fields.
The complete rules have been formalized in Fig. 14. By implementing the new rules for distributive
projection, the compiled JavaScript can directly handle projection for multi-field records.

Reducing object copying. Although the DPS-based design reduces the number of intermediate
objects, it sometimes introduces unnecessary object copying. For example, consider a function id
that takes a parameter of type Double&Int&String and returns it as is:

id (x: Double&Int&String) = x;

The compiled JavaScript code based on DPS is shown in Fig. 23a. The function always copies the
fields from the parameter $x to the destination object $1. Such object copying is necessary if the
result of the function call is part of a merge (e.g. id y , true), but it is inefficient otherwise (e.g.
id y + 1). To optimize this, we do not pass a destination object to the function if the function call
does not occur in a merge, as shown in Fig. 24a. The function call in a merge still follows the
DPS design we discussed earlier, as shown in Fig. 24b. To distinguish these two cases, we add a
dynamic check in the compiled function to avoid unnecessary copying when the destination ($1) is
undefined, as shown in Fig. 23b.

Optional destination objects. We have avoided unnecessary copying when a destination is absent,
but what about the dual case: how to avoid a fresh object when a destination is present? Since the
body of the previous function id is just a variable, no fresh object is created in any case. Let us
consider another function con, which returns a merge of false and 0 regardless of the input:

con (_: Top) = false,0;

The compiled JavaScript code is shown in Fig. 25. $1 || {3 on the first line of the function body
checks if the destination ($1) is present. If it is, $2 is just an alias of $1; otherwise, a fresh object {3}
is created and assigned to $2. By this means, we avoid creating a fresh object if the destination is
provided.

Avoiding boxing/unboxing. Although extensible records, or more specifically, JavaScript objects,
serve as an excellent target for merges in CP, they are not so efficient when only primitive values
and their computation are involved. For example, when compiling 1 + 2 to JavaScript, the naive
approach is shown in Fig. 26a. It would first create two objects for 1 and 2, then access their
"int" fields to get the values, perform the addition, and finally create a new object for the result.
These tedious wrapping/unwrapping of objects are similar to boxing/unboxing in Java and are

ACM Trans. Program. Lang. Syst.

48 Yaozhu Sun, Xuejing Huang, and Bruno C. d. S. Oliveira

const $id = {3};
$id[' fun_(double&int&string)'] = function ($x, $1) {

$1.double = $x.double; $1.int = $x.int; $1.string = $x.string;
I

(a) Before optimization: always copying fields from $x to $1.

const $id = {3};

$id[' fun_(double&int&string)'] = function ($x, $1) {
if ($1) { $1.double = $x.double; $1.int = $x.int; $1.string = $x.string; 3}
return $x;

b
(b) After optimization: no copying when $1 is undefined.
Fig. 23. Simplified JavaScript code for id (x: Double&Int&String) = x.
const $1 = {3};
const $2 = $id['fun_(double&int&string)'1($y); const $1 = {3};
const $3 = {}; $3.int = 1; $id[' fun_(double&int&string)'1($y, $1);
$1.int = $2.int + $3.int; $1.bool = true;

(a)idy + 1. (b) id y , true.

Fig. 24. Simplified JavaScript code for applying id.

const $con = {3};
$con[' fun_(bool&int)'] = function ($_, $1) {

$2 = %1 || {3
$2.bool = false; $2.int = 0;
return $2;

1

Fig. 25. Simplified JavaScript code for con (_: Top) = false,0.

const $1 = {}; $1.int = 1; const $1 = 1;
const $2 = {}; $2.int = 2; const $2 = 2;
const $3 = {}; $3.int = $1.int + $2.int; const $3 = $1 + $2;
(a) Before optimization: 3 objects. (b) After optimization: 0 objects.

Fig. 26. Simplified JavaScript code for 1 + 2.

unnecessary in this case. As shown in Fig. 26b, we do not need to create any objects when compiling
1+ 2. Instead of {int = 1}, we can directly use 1 if it is not part of a merge. This is a significant
optimization for programs that heavily rely on arithmetic. In addition to integers, we also optimize
the compilation for floating-point numbers, boolean values, and strings in a similar way.

ACM Trans. Program. Lang. Syst.

Type-Safe Compilation of Dynamic Inheritance via Merging 49

The optimization becomes a bit more complicated when interacting with parametric polymor-
phism, as we cannot statically know the type of a polymorphic term. Therefore, to guarantee a
consistent runtime representation of primitive values, we also add runtime primitiveness checks
and perform the optimization to those polymorphic terms whose types are instantiated primitive.
For an artificial example, consider the following CP code:

idPartly A B (x: A&B): B = x;
idPartly @String @Int ("foo" , 48) -=> 48
idPartly @String @(Int&Bool) ("foo" , 48 , true) --> 48 | true

We know that the return type of idPartly is B, but we cannot statically know if B is a primitive
type. We should do the optimization in the first application above but not in the second one. Such a
decision is made at run time by checking B’s primitiveness. By this means, we can make sure that
the runtime representation of primitive values is consistent and efficient.

6.5 Selected Rules for Destination-Passing Style

To help to understand the implementation of destination-passing style, we present the compilation
process in the form of type-directed rules. The full set of rules can be found in Appendix A. We select
a few representative ones here. Besides destination-passing style, the design of the compilation
rules is greatly influenced by the optimization that reduces object copying (discussed in Section 6.4).
We will revisit the examples in Fig. 23, Fig. 24, and Fig. 25 to show how the optimized code is
generated systematically.

In the compilation rules, we have three kinds of destinations:

e z stands for a non-empty destination, where the context is a merge. We will store the current
result as a field in the destination object z.

e y? stands for an optional destination, where the context is a function body. Since the last
parameter of a compiled function can be undefined, we do not statically know if the destination
is present.

e nil stands for no destination, which means that the context is neither a function body nor a
merge.

An alternative approach that avoids the case of optional destinations is to compile each function
twice: one with a destination and the other without. This allows the appropriate version to be
chosen statically. We leave the exploration of this variant for future work.

Seven rules for type-directed compilation are selected in Fig. 27a. Arule (I';dst - e & A ~» J | 2)
basically reads as: given a typing context I' and a destination dst, the F;" term e is checked/inferred
to have type A and is compiled to variable z in JavaScript code J. That is, after running J, the
result is stored in the JavaScript variable z. Let us take the variable access in F;" as an example. We
perform case analysis on the destination: if the destination is present, we copy the contents of x to
z (J-VAR); if the destination is absent, we directly return the variable x (J-VARNIL); if the destination
is optional, we dynamically check the presence of y and copy the contents of x only if y is present
(J-VAROPT). Since the destination is set optional for the function body (J-ABs), J-VAROPT is used
instead of the other two if the function body is a variable access. This is how we get the optimized
code for an identity function in Fig. 23b. As for the function presented in Fig. 25, the body is a
merge of two literals. There is only one version of J-MERGE, which assumes that a destination is
provided, so a bridge rule J-OpT is used to properly set the destination. Subsequently,]-MERGE
delegates the compilation to the two subterms (e.g. J-INT) and concatenates the JavaScript code.

Concerning function application, we select three rules in Fig. 27b. A rule I'; dst - x : A ® y:
B ~» J | z : C) basically reads as: given a typing context I' and a destination dst, applying the
compiled function in x of type A to the compiled argument y of type B yields variable z of type

ACM Trans. Program. Lang. Syst.

50 Yaozhu Sun, Xuejing Huang, and Bruno C. d. S. Oliveira

Destinations dst :=nil | y? | z
JavaScript code Ju=@|7Jq;J, | code
Tidsttre © A~ J|z (Type-directed compilation)
J-Var J-VAROPT J-VARNIL
x:AeTl x:AeTl x:AeTl
Tizbkx =5 A~ Iy?Frx = A~ Tinilkx = A~ 0| x
copy(z, x); |z if (y) copy(y, x); |x
J-ABs J-OpT
ILx:Ay?Fe &= B~ J|y Iizke o Aw J|z
T;z+-Ax:A.e:B = A—> B w» Iiy?re © A ~w
z["func_|B|"] = (x, y) => { J; return yo; }; |z var z =y || {}; J; |z

J-MERGE
T;z2ke = A~ I |z
Tizke, = Bw Jp | z
I'-AxB

Iizhe ,eg > A&B w Ji30, | 2

J-INT
I'izbn = Z w z.int = n; |z

(a) Type-directed compilation.

I;dst-rx:Aey:B~w J|z:C (Function application)
JA-ArRrROWEQUIV JA-ArRrROWOPT
A=C A=C
INzbkx:A—>Bey:C w Iizg?tx:A—>Bey:C w
x["func_|B|"1(y, z); |z:B var z = x["func_|B|"]1(y, z0); |z:B

JA-ARROWNIL
A=C
[;nilkx:A—>Bey:C w
var z = x["func_|B|"1(y); |z:B

(b) Function application.

Fig. 27. Selected rules for destination-passing style.

C in JavaScript code J. All three rules deal with the simple cases where the parameter type is
equivalent to the argument type, so we do not need to insert any coercion for the argument. Again,
we perform case analysis on the destination (JA-ARROWEQUIV, JA-ARROWNIL, and JA-ARROWOPT).
This explains why we get different JavaScript code for the two function calls in Fig. 24.

6.6 Separate Compilation

Lastly, our implementation supports separate compilation. This is usually difficult to achieve in
a programming language with a high level of extensibility and modularity that can solve the
expression problem (CP’s solution is covered in Section 3.4). The difficulty of separate compilation

ACM Trans. Program. Lang. Syst.

Type-Safe Compilation of Dynamic Inheritance via Merging 51

cp CP header F;* JavaScript

program.cp program fiplus program.js

open program.h open import

)

include

|- -----

A 4

dependency.lib dependency.fiplus dependency.js

dependency.h

Fig. 28. A flowchart of separate compilation in CP.

-- example.cp -- example.cp.h

open strings; include "strings.lib.h";

type Rcd = { m: String; n: String }; type Rcd = { m: String; n: String };

mkA = trait [this: Rcd] = { term mkA : Trait<{ m: String }&{ n: String }
m = "foobar"; = { m: String }&{ n: String }>;
n = toUpperCase this.m;

IE

Fig. 29. A CP file and its corresponding header file.

in the presence of modularity has been previously studied in the context of feature-oriented pro-
gramming [Apel and Késtner 2009; Prehofer 1997]. As identified by Kastner et al. [2011], modularity
can be divided into two categories: cohesion and information hiding. The cohesive approach often
employs source-to-source transformations, which require the whole source code to be available. As
a result, they achieve modularity at the cost of modular type checking and separate compilation.
Many existing feature-oriented tools, such as AHEAD [Batory et al. 2004], FeatureC++ [Apel et al.
2005], and FeatureHouse [Apel et al. 2013b], fall into this category. The second approach is based
on strong interfaces and information hiding. This notion of modularity is underrepresented in
feature-oriented software development, but it is emphasized in the community of programming
languages and is employed by gbeta [Ernst 2000] and CP.

Both gbeta and CP can solve the expression problem via family polymorphism [Ernst 2004]
without sacrificing separate compilation. However, separate compilation affects the performance of
attribute lookup in gbeta. Since an object in gbeta may have more mixin instances at run time
than what is statically known, and the mixin instances may occur in a different order, the offset
of an attribute cannot be determined statically. Especially when separate compilation is desired,
we cannot do whole program analysis to optimize attribute lookup for some specific inherited
classes. As a result, gbeta has to perform a linear search through super-mixins to look up inherited
attributes. In contrast, attribute lookup in CP, even with dynamic inheritance, is much more efficient,
and no linear search is needed.

ACM Trans. Program. Lang. Syst.

52 Yaozhu Sun, Xuejing Huang, and Bruno C. d. S. Oliveira

The flowchart in Fig. 28 gives an overview of the compilation process from CP all the way down
to JavaScript, which is almost a textbook example of separate compilation. Like most programming
languages, the compilation unit of CP is a file. One can refer to another file using open directives in
CP, which compile to JavaScript module import statements. To provide sufficient type information
for modular type checking, a CP file compiles to a JavaScript file as well as a CP header file. CP
header files are similar to .mli files in OCaml and consist of type definitions, type signatures for
terms, and references to other header files. See Fig. 29 for a slightly simplified example. Normally,
header files are automatically generated by the CP compiler, but users can also edit them to hide
some definitions that are supposed to be private. The compilation only depends on the file to be
compiled and the headers files of its dependencies. As a result, compiling a file does not require
recursively compiling its dependencies, and its dependents do not need recompilation as long as its
header file is not changed (though its implementations may have changed).

Between CP and JavaScript, there is a core calculus F; [Bi et al. 2019; Fan et al. 2022]. Since our
implementation of CP is based on the elaboration semantics formalized by Zhang et al. [2021],
CP language constructs are first desugared into F;" terms, and then these F; terms are compiled
into JavaScript code. Both sets of elaboration rules are syntax-directed and compositional, and the
elaboration contexts only include type information from header files in our implementation. That
is why CP code can be separately compiled with the help of header files.

7 Empirical Evaluation

In this section, we conduct an empirical evaluation of the CP compiler. We analyze the impact
of various optimizations in the CP compiler. Furthermore, we compare the efficiency of dynamic
inheritance in CP with that in handwritten JavaScript code. The key takeaway from our empir-
ical evaluation is that using a naive compilation scheme for merges can be orders of magnitude
slower than optimized code. Our optimizations lead to code that can be competitive with similar
handwritten JavaScript code. The benchmarks are available in the supplementary materials.

Experimental setup and benchmark programs. We performed experiments on a system featuring
an Apple M1 Pro chip and 16GB RAM. JavaScript code was executed using Node.js 20.12.2 LTS.
The outline of benchmark programs is presented in Table 1. The initial four benchmarks focus on
general-purpose computations, while the latter four are adapted from recent work on compositional
embeddings [Sun et al. 2022], showcasing CP’s novel features. Among them, chart is the biggest
program with around 300 lines of code. Challenges discussed in Section 3, including dynamic
inheritance and family polymorphism, are prominent in the latter four benchmarks.

7.1 Ablation Study on Optimizations

The coercive subtyping semantics of CP raises important questions about efficiency since coercions
have runtime costs and they are pervasively employed in generated code. There are essentially
three main concerns that need to be addressed in obtaining an efficient compilation scheme for CP:

¢ Efficient lookup. Since merge lookup is pervasive, it is important to use a runtime repre-
sentation for merges that enables efficient lookup.

¢ Efficient merging and copying. Since merging is frequent, it is important that the merging
process is efficient and minimizes the amount of copying involved in merging.

e Minimizing the cost of coercions. Since our subtyping is coercive, it is fundamental that
the cost of coercions is minimized. Furthermore, optimizations should avoid coercions when
possible.

In our work, we have addressed the above three points. Our representation of merges as type-
indexed records makes the cost of a merge lookup essentially the same as the cost of a JavaScript field

ACM Trans. Program. Lang. Syst.

Type-Safe Compilation of Dynamic Inheritance via Merging 53

Table 1. Outline of the benchmark programs.

fib Calculating Fibonacci numbers without memoization.

fact Some factorial functions multiplied together.

sieve Sieve of Eratosthenes, an algorithm for finding prime numbers.

nbody Numerical simulation of the n-body problem.

region An embedded DSL for geometric regions.

chart Generating SVG code for customizable charts.

fractal Generating SVG code for a simple fractal called the Sierpinski carpet.

minipedia Generating HTML code for a mini document with a computed table of contents.

T Some computations in the benchmark programs are repeated several times for longer and more stable execution time.

lookup, which is very efficient. This provides a major source of improvement over a representation
with pairs, where lookup time can be linear. We believe that it is hard to do better in this dimension,
at least if the goal is to target JavaScript. For merging, we rely on JavaScript’s ability to copy
object fields. An important concern for merging is to avoid the creation of intermediate objects,
minimizing the amount of copying. The DPS optimization is particularly important for obtaining
efficient merging. Like lookup, we believe that the CP compiler also achieves efficient merging.
Finally, to mitigate coercions, we employ a hybrid model that combines inclusive and coercive
subtyping. We only insert coercions when necessary and try to eliminate redundant coercions as
much as possible. We have mentioned several optimizations in Section 6, two of which are avoiding
unnecessary coercions: one for equivalent types and the other for record projections.

All the implemented optimizations should improve the performance of our CP compiler in theory.
Here we select four representative ones to evaluate their impact in practice:

(1) Reducing intermediate objects using destination-passing style (DPS);

(2) Preventing primitive values from boxing/unboxing (NoBox);

(3) Eliminating coercions for subtyping between equivalent types (TyEquiv & CoElim);
(4) Avoiding the insertion of coercions for record projections (ProjOptim).

We conduct an ablation study on the four optimizations. Fig. 30b shows the execution time ratios
(slowdowns) to the optimized JavaScript code when removing each optimization. Fig. 30a lists
the original data for Fig. 30b in milliseconds. CP Compiler represents the most optimized version
of the CP compiler, including all the aforementioned optimizations. The remaining variants are
CP Compiler minus one optimization, including all other optimizations. To summarize the bench-
mark results, different optimizations show different degrees of speedup for different benchmarks,
but we believe that the coercion-related ones are especially important when (dynamic) inheritance
is concerned.

The first optimization (DPS) speeds up the execution of the latter five benchmarks by reducing the
number of intermediate objects and object concatenations. In contrast, the former three benchmarks
do not benefit from the optimization because they only perform arithmetic operations and no
objects are involved. The first benchmark (fib) even becomes a bit slower because the optimization
inserts extra checks into function bodies to test if destination objects are present. Overall, the
speedup ratios are 2.6x at most. This optimization clearly helps for programs involving objects and
merging, although the benefits of this optimization are smaller than optimizations on coercions. In

ACM Trans. Program. Lang. Syst.

54 Yaozhu Sun, Xuejing Huang, and Bruno C. d. S. Oliveira

fib fact sieve nbody region chart fractal minipedia
CP Compiler 2837 1433 1736 1704 1944 516 4578 45
w/o DPS 2451 1422 1728 4402 3806 1243 6861 60
w/o NoBox 66348 13369 4314 32716 2144 783 5249 53
w/o TyEquiv 2860 1425 1738 1722 2349 1229 5064 24080
w/o CoElim 6020 2832 1801 9851 2693 2803 6173 30192

w/o ProjOptim 2880 1438 1795 47505 28591 1117 7990 OOM#*

(a) Execution time (ms) of the JavaScript code generated by variants of the CP compiler.

1000
CP Compiler C— M
w/o DPS I

w/o NoBox [E5&3
w/o TyEquiv X1

E w/o CoElim =23
w/o ProjOptim X3

=3
S

5
T

Execution time ratio (slowdown)

NCNCNCNENCNCNCNCNCNCNONCNONE

fib fact sieve nbody region chart fractal minipedia

(b) Execution time ratios (slowdowns) of different variants to the optimized JavaScript code.
¥ The bar that exceeds the frame represents JavaScript heap out of memory (OOM) for minipedia w/o ProjOptim.

Fig. 30. Ablation study on optimizations for the CP compiler.

essence, intermediate objects are not the main bottleneck in the JavaScript code generated by the
CP compiler, although they still have a considerable cost for many programs.

The second optimization (NoBox) is important for primitive operations such as arithmetic, which
complements the first optimization. It speeds up all benchmarks since primitive operations are
inevitable in practical programs. It brings around 23x speedup for fib and around 19X speedup for
nbody because they involve a lot of arithmetic operations. Numbers do not need to be boxed/un-
boxed in the optimized JavaScript code, so the performance is improved significantly.

The analysis for the third optimization is split into two parts for a finer-grained analysis. We have
a version of the CP compiler that only removes coercions for syntactically equal types but does not
eliminate other coercions for equivalent types (w/o TyEquiv). The other version does not eliminate
redundant coercions at all (w/o CoElim). Some benchmarks (such as chart and minipedia) make
use of equivalent types a lot, hence their performance is already affected by removing TyEquiv.
After further removing CoElim, most benchmarks experience significant slowdowns (up to 671x
slower in the worst case for minipedia).

The last optimization (ProjOptim) targets coercions for record projections, so the benchmarks
that do not use records (such as fib, fact, and sieve) are not affected at all. Among the relevant
benchmarks, nbody becomes around 28x slower without this optimization. This is because the
masses, velocities, and coordinates of the bodies are all stored in records. Note that the JavaScript
code generated for minipedia runs out of memory, so there is no data in Fig. 30a, and the exception
is represented by a bar that exceeds the frame in Fig. 30b.

In conclusion, all optimizations work in practice. The elimination of redundant coercions has a
particularly significant impact on the performance. The representation of JavaScript objects (or

ACM Trans. Program. Lang. Syst.

Type-Safe Compilation of Dynamic Inheritance via Merging 55

extensible records in general) brings forth a class of equivalent types, whose terms share the same
shape. We can then avoid the coercions between these types but still obtain an equivalent object as
a result. This optimization has a significant impact but cannot be done in previous work [Dunfield
2014; Oliveira et al. 2016] because they use nested pairs as the elaboration target of merges. Since
pairs are order-sensitive, they require coercions that can be avoided with order-insensitive objects
(see also the discussion in Section 4.1). Together with the faster lookup by type indices in objects,
the JavaScript code generated by the CP compiler achieves reasonable performance.

7.2 Comparison with Handwritten JavaScript Code

Our focus in this paper is on the type-safe compilation of dynamic inheritance and the efficient
compilation of languages with merges. A first natural question to ask is how the new compilation
scheme compares against existing compilation schemes for merges. Unfortunately, such a direct
comparison is not feasible for a few different reasons. Firstly, the only other compiler for a language
with merges is Stardust by Dunfield [2014]. However, Stardust targets ML, instead of JavaScript.
Thus, a direct comparison of performance would not be possible. Furthermore, Stardust does not
support distributive subtyping and nested composition. Thus, most of our examples and case
studies cannot be encoded in Stardust. Nevertheless, in Section 4.1, we have highlighted some
advantages of using our record-based representation versus using pairs (which Stardust employs)
in the compilation of merges.

In spite of the above-mentioned difficulties of a direct comparison, it is still helpful to do an
elementary quantitative analysis with handwritten JavaScript code to assess the impact of the
coercive semantics of CP. Although we have worked hard to eliminate unnecessary coercions,
the JavaScript code generated by the CP compiler still includes plenty of coercions. In contrast,
handwritten JavaScript code is coercion-free, and subtyping in TypeScript has no cost. It would
be unrealistic to expect a stable performance that is competitive with JavaScript, especially since
our implementation is still a proof of concept for our compilation scheme. However, ideally, the
performance penalty imposed by coercions should not be too high.

A brief comparison is made based on the former four benchmarks, namely fib, fact, sieve, and
nbody (we will explain region® later). Fig. 31c shows the execution time ratios (slowdowns) of
the JavaScript code generated by the CP compiler compared to the handwritten JavaScript code,
and Fig. 31a lists the original data. They mainly demonstrate general-purpose computations. The
handwritten JavaScript code is transliterated from the corresponding CP code in order to make an
apples-to-apples comparison. It follows a functional programming style similar to CP and may not
be idiomatic in JavaScript. The performance of the JavaScript code generated by the CP compiler is
slightly slower than that of the handwritten code for fib, fact, and sieve. The biggest slowdown is
around 3X for nbody, partly because the manipulations of records and arrays in CP are less efficient
than in native JavaScript. Moreover, our treatment of let expressions is oversimplified. In CP,
let x = el in e2is desugared into (\x — e2) el, which is much slower than const statements
in JavaScript. In nbody, there are several nested lets in recursive functions, introducing significant
overhead.

The latter four benchmark programs make use of CP’s novel features, making transliteration
to JavaScript difficult. Nevertheless, we adapt the fifth benchmark (region) to make a comparison
between conceptually equivalent programs. To recap, the benchmark program is mainly an em-
bedded DSL for geometric regions [Hudak 1998]. For modular extension, the DSL is implemented
with techniques of family polymorphism, which are described in Section 2.4 for JavaScript and in
Section 3.4 for CP. Both implementations heavily rely on class/trait inheritance, so the performance
penalty of inheritance is well demonstrated in this benchmark. Furthermore, we change the number
of inheritance levels from 0 to 10 (region™ represents that the desired method is in the n-level

ACM Trans. Program. Lang. Syst.

56 Yaozhu Sun, Xuejing Huang, and Bruno C. d. S. Oliveira

fib fact sieve nbody region®

JavaScript 2423 1427 1413 566 1513
CP 2837 1433 1736 1704 1137

(a) Execution time (ms) for five benchmarks.

Inheritance level 0 1 2 3 4 5 6 7 8 9 10

JavaScript 1513 1896 2002 2328 2333 2515 2724 2928 3260 3507 3670
TypeScript 1575 1944 2409 2755 3096 3614 4236 4606 4903 5186 5593
CP 1137 2184 2329 2465 2565 2708 2785 2873 2968 3069 3221

(b) Execution time (ms) for region®-1°.

5 6000 —
JavaScript ©co -

4 JavaScript C=3
- -1) - - - - -
= cpC— 5000 | TypeScript P]
2 p— -
o 3F — — - -
© %) -
2 E 4000 L .
“) -
e 2T 7 E
2 = 3000
= S
g E
= g 2000
c
3 P TS _ —~-|- o [} .
5
g 1000
x
w
H 0 1 1 1 1 1 1 1 1 1
05 0 1 2 3 4 5 6 7 8 9 10
fib fact sieve nbody region® Inheritance level
(c) Bar chart for five benchmarks. (d) Line chart for region-1°.

Fig. 31. Comparison between JavaScript code generated by the CP compiler and handwritten code.

super-trait/-class) to see the trend of the performance penalty. In other words, region® is monolithic
code with a single trait/class and no inheritance hierarchy. At level one, we introduce a slightly
more modular version of region with one level of inheritance: there is a super-trait/-class and a
sub-trait/-class. Higher levels simply introduce more inheritance layers. The results are shown in
Fig. 31b and Fig. 31d.

Besides CP and JavaScript, a TypeScript version is also included for this comparison. The source
code is simply the JavaScript version plus type annotations. We use the official TypeScript compiler
to compile it to JavaScript and then use Node.js to execute the JavaScript code. The TypeScript
code has a different performance profile from the JavaScript code because the TypeScript compiler
by default (as of the current version 5.4) desugars classes into prototypes. This is due to the default
compilation target being ECMAScript 3 [ECMA 1999] for best compatibility, which does not support
classes. Newer versions of Node.js (based on ECMAScript 6 [ECMA 2015] or above) natively support
classes, so the handwritten JavaScript directly uses classes. To sum up, the difference between
JavaScript and TypeScript in the benchmark is mainly classes versus prototypes.

Without inheritance (region®), the JavaScript code generated by the CP compiler is faster than the
handwritten JavaScript and TypeScript code. This is because the technique of nested anonymous
classes is neither idiomatic nor efficient in JavaScript. In contrast, nested traits themselves do not
introduce extra runtime overhead in CP. However, when the desired method is one level up in
the inheritance hierarchy, the CP compiler generates around 2x slower code, compared to the
monolithic version, because coercions are inserted for nested trait composition. For the monolithic

ACM Trans. Program. Lang. Syst.

Type-Safe Compilation of Dynamic Inheritance via Merging 57

version, there are almost no coercions in the CP code. Then the performance penalty increases more
smoothly when the inheritance level is higher. The CP compiler regains its leading position when
the number of inheritance levels is higher than 6. In contrast, TypeScript has the steepest curve.
The desugared prototype-based code generated by the TypeScript compiler is the least efficient
among the three implementations.

In conclusion, the performance penalty of coercions brought by trait inheritance is not negligible
but increases more smoothly with the number of inheritance levels than in handwritten JavaScript.
This is partly due to the efficient lookup by type indices in extensible records (or, more specifically,
JavaScript objects). Looking up a deeply nested method in the inheritance hierarchy can be slow in
JavaScript, but this is not the case in CP.

8 Related Work

Compilation of inheritance. In his excellent survey on inheritance, Taivalsaari [1996] distinguishes
two strategies for implementing inheritance: delegation and concatenation. Most prototype-based
languages, such as SELF [Ungar and Smith 1987] and JavaScript, implement inheritance via del-
egation, where an object contains a reference to its prototype (e.g. __proto__ in JavaScript), and
methods that are not found in the current object will be delegated to its ancestors in the prototype
chain. In contrast, CP implements inheritance via concatenation (a.k.a. merging throughout the
paper), where a trait is self-contained and itself contains all the methods of its ancestors. Although
some copying is involved, the concatenation strategy is more efficient than delegation in terms of
method lookup.

To improve the performance of method lookup, newer implementations of the SELF language
cache all lookup results for a polymorphic call site in a polymorphic inline cache (PIC) [Holzle et al.
1991]. The methods cached in a PIC will be inlined into the caller to further reduce the overhead of
method calls. Since a PIC is empty until a method is called for the first time, dynamic recompilation
is required to optimize the code at run time. Moreover, the presence of dynamic inheritance may
lead to a full method lookup in SELF [Chambers 1992]. Modern JavaScript engines, such as V8 used
in Node.js, utilize similar PIC-based techniques to optimize method calls. Though the CP compiler
does not implement inlining at all, which is definitely a useful optimization, it is still efficient in
terms of method lookup, and dynamic inheritance never causes a slower lookup.

Typical compilers for mainstream class-based languages, such as C++ and Java, add a virtual
method table (vtable) [Driesen et al. 1995] to each object to avoid searching for methods in the
inheritance hierarchy at run time. A vtable is basically an array of function pointers, associating
each method name (and parameter types if overloaded) with its implementation. Similarly, CP
compiles an object to a type-indexed record, which also associates each method name and type
with the corresponding implementation, among other fields. What is more, CP allows for first-class
classes (traits) and dynamic inheritance, which are not supported by most mainstream languages.
This is one of the key differences of our work compared to other OOP language compilers.

Another significant difference from mainstream OOP languages is that our compilation of
inheritance is based on the denotational model by Cook and Palsberg [1989]. In this model, classes
(traits) are encoded as functions, and inheritance is essentially merging functions, which is illustrated
in Section 3.2. That is why the source language of the compilation scheme (1)) does not contain
any notion of classes or objects. Such encodings are common in the literature on foundations for
statically typed OOP [Bruce 2002; Bruce et al. 1999; Pierce 2002], and they largely simplify the
formalization of compilation and its metatheory.

Multiple inheritance is a well-known troublemaker in OOP languages, bringing the diamond
problem and method conflicts, among other issues. Alternative notions like mixins [Bracha and
Cook 1990] and traits [Ducasse et al. 2006] are proposed to alleviate the issues. A core difference

ACM Trans. Program. Lang. Syst.

58 Yaozhu Sun, Xuejing Huang, and Bruno C. d. S. Oliveira

between mixins and traits is how they handle conflicts when the same method name occurs in
multiple ancestors. Mixins resolve conflicts implicitly by linearization (e.g. C3 linearization [Barrett
et al. 1996]). However, the implicit resolution of conflicts may conceal accidental conflicts and lead
to subtle bugs. Traits, on the other hand, require the programmer to resolve conflicts explicitly. CP
adopts the trait model and imposes the disjointness constraint on merging (and trait inheritance).
Note that the disjointness constraint does not only consider the method names but also takes into
account the types of the methods, so the methods with the same name but different return types are
considered disjoint and do not conflict with each other. By this means, CP tries to reach a balance
between safety and flexibility.

Dynamic inheritance and first-class classes. While various forms of multiple inheritance are well
studied and implemented in some popular languages, such as C++, Ruby, and Scala, dynamic
inheritance is more challenging and involved, especially in terms of static typing. In the literature
of OOP, dynamic inheritance is often discussed in a broader context of first-class classes [Strickland
et al. 2013], where inherited classes can be determined at run time, among other dynamic features.
There are only a few statically typed languages that support first-class classes. To the best of our
knowledge, they are gbeta [Ernst 2000], TypeScript [Microsoft 2012], Typed Racket [Takikawa
et al. 2012], Wyvern [Lee et al. 2015], and most recently, CP [Zhang et al. 2021]. As elaborated in
Section 2, the most popular one, TypeScript, has significant type-safety issues when dealing with
dynamic inheritance.

Typed Racket is gradually typed and uses row polymorphism to represent class types. Similarly
to the disjointness constraints in CP, there are constraints on row variables to express absence,
and thus the inexact superclass problem that TypeScript suffers from is resolved in Typed Racket.
However, the absence constraint on a row variable only includes the method name but not the type,
so the dynamically inherited class is more restricted than in CP. Moreover, Xie et al. [2020] formally
prove that CP’s disjoint polymorphism is more powerful than similar forms of row polymorphism.
Furthermore, unlike Typed Racket, CP can model virtual classes and family polymorphism.

Wyvern is a language for design-driven assurance, and Lee et al. [2015] explored a foundational
account of first-class classes based on tagging [Glew 1999]. Similarly to our formalization, they
give an elaboration semantics of an OOP language. However, their theory is very different from
ours, and they target a more sophisticated calculus with hierarchical tagging and dependent types.
In contrast, our target language is a standard record calculus. Furthermore, their calculus cannot
model multiple inheritance or family polymorphism, and their implementation is an interpreter
rather than a compiler.

The gbeta language is the most interesting one and is the closest to CP because it supports
dynamic multiple inheritance and family polymorphism. However, separate compilation was not
supported at the time when Ernst [2000] wrote his dissertation because of some technical issues
with the Mjelner BETA persistence support. If this factor is disregarded, separate compilation can
still be accomplished, but at the cost of efficient attribute lookup.® Since an object in gbeta may
have more mixin instances at run time than what is statically known, and the mixin instances may
occur in a different order, the offset of an attribute cannot be determined statically. As a result,
gbeta has to perform a linear search through super-mixins to look up inherited attributes. In
contrast, attribute lookup in CP, even with dynamic inheritance, is more efficient, and no linear
search is needed.

The notion of patterns in gbeta unifies classes and methods, and patterns can be composed using
the combination operator ‘&’, which is similar to the merge operator ,” in CP. Though dynamic

8In email communications, Erik Ernst, the author of gbeta, confirmed having an implementation with separate compilation
but linear-time lookup of attributes.

ACM Trans. Program. Lang. Syst.

Type-Safe Compilation of Dynamic Inheritance via Merging 59

multiple inheritance can be achieved using ‘&’, only a subset of dynamic combinations is safe,
where at least one of the classes being composed must be created by single inheritance [Ernst 2002].
Otherwise, the C3 linearization algorithm used by gbeta may fail at run time. In contrast, dynamic
inheritance via ‘,” is completely type-safe, because CP utilizes disjointness to avoid conflicts, and no
linearization is needed. This difference has been summarized earlier as mixins versus traits. Some
other notable consequences of this difference are:

e '’ is commutative, while ‘&’ is not;
e ‘) supports mutual dependencies between traits, while ‘&’ rejects such cycles.

Virtual classes and family polymorphism. Virtual classes [Madsen and Moller-Pedersen 1989],
similarly to virtual methods, are nested classes that can be overridden in subclasses. Virtual
classes enable family polymorphism [Ernst 2001], which can naturally solve the expression prob-
lem [Ernst 2004]. The idea of virtual classes was initially introduced in the BETA programming
language [Madsen et al. 1993] and later generalized in gbeta [Ernst 2000]. Caesar] [Aracic et al.
2006], an aspect-oriented programming language based on Java, also supports virtual classes but
does not allow cross-family inheritance and dynamic inheritance. Newspeak [Bracha et al. 2010], a
descendant of Smalltalk, combines virtual classes and first-class modules (i.e. instances of top-level
classes) but is dynamically typed. The calculi Jx [Nystrom et al. 2004], J& [Nystrom et al. 2006],
ve [Ernst et al. 2006], Tribe [Clarke et al. 2007], and .FJ [Saito et al. 2008], just to name a few,
formalize virtual classes with static inheritance but do not support dynamic inheritance.

Zhang and Myers [2017] propose the Familia programming language that unites object-oriented
polymorphism and parametric polymorphism by unifying interfaces and type classes. In Familia,
a mechanism of family polymorphism based on nested inheritance, similarly to Jx [Nystrom et al.
2004], is also deployed. During compilation, a linkage is computed for every class, which consists of
a self-reference, a dispatch table, and the linkages of its nested classes, among others. At the heart
of the mechanism is further binding [Madsen et al. 1993]: rewiring self-references for nested classes.
Further binding is realized in Familia by linkage concatenation between families. This process
is similar to the nested trait composition in CP, but there is a significant distinction in terms of
separate compilation. CP only needs type information of the imported modules at compile time,
while Familia requires class linkages that contain some implementation details of the imported
modules (e.g. method definitions) and copy these details from superclasses’ linkages. In this sense,
with linkages, Familia supports some degree of separate compilation, but not to the same extent as
the CP compiler does. Moreover, since Familia does not support dynamic inheritance, their class
hierarchies are determined statically. In contrast, CP supports dynamic trait composition, which
brings extra flexibility.

More recently, Kravchuk-Kirilyuk et al. [2024] propose PERSIMMON, a functional programming
language that features extensible variant types and extensible pattern matching. CP also supports
them via compositional interfaces and method patterns. PERsiMMoN additionally allows types to
be members of a family, relying on the support for relative path types [Saito et al. 2008] in their
core calculus. Internally, PERsiMMON makes use of linkages that are similar to those in Familia. An
important limitation of their current design is that modular type checking and separate compilation
are not supported for multi-file programs, while CP fully supports them.

Elaboration of intersection types and the merge operator. Dunfield [2014] shows that unrestricted
intersection types and a term-level merge operator [Reynolds 1997] can encode various features
like overloading and multi-field records, and they can be elaborated into product types and pairs.
However, her approach lacks the critical property of coherence, i.e. the property that ensures the
result of a merge is unambiguous. In the follow-up work on disjoint intersection types [Oliveira et al.

ACM Trans. Program. Lang. Syst.

60 Yaozhu Sun, Xuejing Huang, and Bruno C. d. S. Oliveira

2016], the merged components are required to be disjoint with each other to avoid the semantic
ambiguity. Alpuim et al. [2017] added parametric polymorphism to the calculus. Bi et al. [2018, 2019]
further enhanced the intersection subtyping with distributivity, enabling more novel features like
nested composition and family polymorphism. In other words, only Bi et al.’s F;" calculus fully covers
the topics mentioned in Section 3. All the aforementioned work employs elaboration semantics
with standard A-calculi serving as targets. They use nested pairs as the target of elaboration, and
consequently, the time complexity of extracting a component by type can degenerate to linear in
the worst case. In addition, extensible records require fewer coercions than nested pairs because
some different source terms compile to equivalent records. These differences from our CP compiler
have been discussed in detail in Section 4.1. In short, they do not consider more efficient runtime
representations or eliminating redundant coercions, nor do they have benchmarks to evaluate
performance. Instead, their focus is on proving the type safety and coherence of the elaboration.
Furthermore, none of the aforementioned work develops a language with separate compilation
units.

The compilation of merges in our work has similarities to the compilation of type-indexed
rows [Shields and Meijer 2001], where record labels are discarded and record fields are sorted by
their types. However, the work on type-indexed rows does not consider subtyping, which eliminates
many of the issues that we had to deal with. For instance, they do not need to apply coercions to
ensure that information statically hidden by subtyping is also hidden at run time.

Compilation of extensible records. Ohori [1995] investigates a polymorphic record calculus and
introduces an efficient type-directed compilation method for records. Following the type-inference
stage, records are converted into vectors with explicit indexing. However, his records are not exten-
sible, and his method has difficulties to handle subtyping. Subtyping for records frequently enables
field hiding and reordering, rendering it impossible to determine a label’s offset statically. Gaster
and Jones [1996] propose a compilation technique for polymorphic extensible records that utilizes
qualified types [Jones 1994]. During the compilation process to the target language, supplementary
parameters are introduced to determine suitable offsets. This approach is integrated into Hugs,
a well-known implementation of Haskell, as an extension. Their system is later generalized by
type-indexed rows [Shields and Meijer 2001]. In summary, subtyping and record concatenation
(or merges) pose significant challenges to the compilation of extensible records. Our work takes
pragmatic considerations into account, including targeting widely used dynamic languages such
as JavaScript. As a result, we rely on the primitive support of objects and object extension in our
target language and do not delve into low-level representations of extensible records, for which a
comprehensive summary can be found in the paper by Leijen [2005].

Compilation of feature-oriented programming. Feature-oriented programming (FOP) [Apel and
Kastner 2009; Prehofer 1997] is a programming paradigm that aims to modularize features in
software product lines [Apel et al. 2013a]. There is a debate on what modularity exactly means,
and Késtner et al. [2011] mention two notions of modularity: cohesion and information hiding. The
majority of FOP work [Apel et al. 2013b, 2005; Batory et al. 2004] focuses on the notion of cohe-
sion and basically does source-to-source transformations, which hinders modular type checking
and separate compilation. There is some other work, such as Jiazzi [McDirmid et al. 2001] and
Scala [Odersky and Zenger 2005], leveraging information hiding instead and supporting modular
type checking and separate compilation. However, FOP is usually achieved via verbose design
patterns or metaprogramming in those languages. For instance, some precursor work of composi-
tional programming, done in Scala, employs design patterns based on object algebras [Oliveira and
Cook 2012] to achieve FOP [Oliveira et al. 2013; Rendel et al. 2014]. Since merging is not directly
supported in Scala, specialized composition operators are required to simulate merges for different

ACM Trans. Program. Lang. Syst.

Type-Safe Compilation of Dynamic Inheritance via Merging 61

object algebra interfaces. The creation and use of those composition operators cause a significant
burden for developing programs. In contrast, CP natively supports merges, eliminating the need
for such specialized composition operators and supporting FOP more directly.

Delta-oriented programming (DOP) [Schaefer et al. 2010] is an extension of FOP, which features
delta modules that can add, remove, or modify classes. A feature module is a delta module without
the remove operation. DOP supports compositional type checking [Bettini et al. 2013] at the level
of source code. More recently, a core calculus for dynamic DOP is proposed by Damiani et al. [2018]
to support runtime variability [Hallsteinsen et al. 2008] and is proven to be type-safe. However,
dynamic DOP is not yet implemented, and its separation compilation is unexplored.

9 Conclusion

CP is unique in that it supports dynamic inheritance, multiple inheritance, and family polymorphism
all together in a type-safe manner. This paper proposes an efficient compilation scheme for CP,
which features modular type checking and separate compilation. Not only have we presented
formalized rules that capture the main ideas of compiling merges to type-indexed records, but we
also provide a concrete implementation that targets JavaScript. In addition, benchmarks are included
to evaluate our CP compiler empirically. The experimental results validate that our compilation
scheme and optimizations lead to reasonable efficiency of generated code. More importantly, the
type safety of our compilation scheme has been mechanically proven in Coq. We hope our work
will benefit future work on type-safe compilation for dynamic inheritance or family polymorphism.

Future work. An obvious direction for future research is to formalize the compilation of parametric
polymorphism. This endeavor would require significant effort, because not only will type variables
and disjoint quantification complicate the metatheory, but the target calculus also needs to support
first-class labels. A second direction is to prove coherence. While we have briefly sketched how a
proof of coherence of the elaboration could be done, by adapting ideas in previous work [Bi et al.
2018], we have not done this proof. Thus, completing this proof would be interesting, although
we believe that our focus on generating efficient coercions may add significant complexity to this
proof. A possibility here is to define a simplified elaboration semantics targeting a language with
records, but not aimed at optimizing coercions. This should be helpful for simplifying a coherence
proof. Another interesting result would be to give a direct semantics for A} and show that the
elaborated terms in the target preserve the semantics of the source term.

In our elaboration rules, all top-like terms are treated as T and elaborated to an empty record
(see rules ELa-Top, ELA-ToPABS, and ELa-ToPRcD). Moreover, the coercive subtyping rule S-Top
coerce a target term to an empty record if B is top-like in A <: B. As a result, side effects in top-like
terms are erased during elaboration, which is not desired in imperative languages. For example,
(Ar.r :=1) : Ref Z — T is elaborated to {}, and the original function is erased. One potential
solution is not to erase the top-like terms during the elaboration. For example, we can elaborate
the previous expression to {|Ref Z — T| = Ar. €}, assuming r := 1 is elaborated to €. However,
this change breaks the current design of equivalent types because top-like terms can have different
representations now. Sun [2025] briefly discusses this issue in the section of future work.

Concerning implementation, our prototype of the CP compiler is not as fully fledged as existing
compilers for other functional languages. In addition, more optimizations should be done to improve
the performance of the generated JavaScript code, especially on coercions. For example, when
compiling an upcast (48, true) : Int, we could use masks to hide the boolean part instead of deleting
that field. While this paper focuses the empirical evaluation on the performance of the generated
JavaScript code, the compilation time is also an important factor in practice. For instance, type
splitting (rule S-SpLIT) used in our subtyping algorithm is not efficient enough and can lead to a

ACM Trans. Program. Lang. Syst.

62 Yaozhu Sun, Xuejing Huang, and Bruno C. d. S. Oliveira

significant slowdown when complex intersection types are involved. It is worthwhile investigating
a more efficient algorithm for distributive subtyping with intersection types in the future.

A Compilation Scheme from F;" to JavaScript

The syntax of F}' is defined below, where the main differences from A} are the addition of parametric
polymorphism and fixpoint expressions:

Types AB:=T|L|Z|X|A—>B|VX+*A. B|{t:A}|A&B
Expressions ex={}|n|x|fixx:A e|Ax:A. e:Ble ey | AX*A. e:B|eA|{t=¢e}|el]|e,e]e:A

The compilation scheme we describe here directly generates JavaScript code instead of A, terms,
which is closer to the actual implementation. We denote the generated JavaScript code by J, which
can be empty (@), concatenation of two pieces of code (J;; J.), or some predefined code that is
listed in Fig. 32. There are some notations for type indices, which are actually implemented as
strings in JavaScript (as discussed in Section 4.5). Destinations [Shaikhha et al. 2017] also play an
important role in the compilation scheme, being part of the rules for type-directed compilation and
distributive application. The key idea of destinations has been elaborated in Section 6.5.

JavaScript code F==2| };F | code
Type indices T:::Z|7">| TV [{¢: T} | 1 & T,
Destinations dst:=nmil | y? | z

A.1 Type-Directed Compilation

Similarly to the elaboration in Section 5, the compilation process is type-directed. Besides the
typing context T', there is also a destination variable dst that guides the code generation. A rule
basically reads as: given a typing context I' and a destination dst, the F;" term e is checked/inferred
to have type A and is compiled to variable z in JavaScript code J. That is, after running 7, the result
is stored in the JavaScript variable z.

Rules J-INT and J-VAR have three variants for different destinations, while rules J-App and J-TApp
only have one version each but delegate to three variants of application for different destinations,
which helps to generate more optimized JavaScript code. Examples illustrating variants of rule J-VAR
and rule JA-ArRrROWEQUIV (via rule J-App) has been explained in Section 6.5. Rules J-INTOPT and
J-INTNIL are designed for the optimization of boxing/unboxing (see Section 6.4). Other rules assume
that the destination is present and generate code accordingly. Rule J-NiL serves as the bridge from
empty destinations to non-empty ones, while rule J-Opt is for optional ones.

Tidstre © A~ 7| z‘ (Type-directed compilation)
J-Nm J-OpT
Tizteoe A~ J|z Iizre o A~ J|z J-Tor
I;nilke & A ~ code | z [;9?7+e © A ~» code | z Lizb{} > Tw 2|z
J-INT J-INTOPT
T = |Z| T = |Z| J-INTNIL
T;zkn = Z ~» code | z T;9?2kn = Z ~» code | z [;nilkn = Z ~» code | z
J-Var J-VArROPT J-VARNIL
x:AeT x:AeTl x:AeT
Iz x = A~ code | z Iy?Fx = A ~» code | x Tinilkx = A~ 0| x

ACM Trans. Program. Lang. Syst.

Type-Safe Compilation of Dynamic Inheritance via Merging

/* J-Nil */

var z = {};

J;

/*x J-0Opt x/

var z =y || {};
J;

/* J-Int */

z[T] = n;

/* J-IntOpt */
var z = n;
if (y) y[T1 = n;

/* J-IntNil */
var z = n;

/* J-Var %/
copy(z, Xx);

/*x J-VarOpt */
if (y) copy(y, x);

/* J-Fix %/
var x = z;
NH

/* J-Abs *x/

z[T] = (x, y) = {
J; return yo;

b

/* J-TAbs */
z[T1 = (X, y) = {
J; return yo;

b

/* J-Rcd */

z.__defineGetter__(T, () = {

NH

delete this[T];

return this[T] = y;
N

/* J-Def */
export var x = {};
J1; J2;

/% JA-Nil =/
var z = {};

J;

/% JA-Opt x/
var z =y || {};
J;

/* JA-Arrow */
var yo = {};
J1; J2;

/* JA-ArrowEquiv */
x[T1(y, 2);

/* JA-ArrowOpt */
var z = x[T1(y, z0);

/* JA-ArrowNil x/
var z = x[T1(y);

/% JA-A1L */
x[T1(Ts, z);

/* JA-AllOpt */
var z = x[T1(Ts, y);

/% JA-A1L x/
var z = x[T1(Ts);

/* JP-RcdEq */
var z = x[T];

/% JS0-Int */
J;
y = y[M];

/* JS@-Var x/
J;

if (primitive(X)) y = y[Tl;

/* JS-Equiv */
copy(y, Xx);

/* JS-Bot */

y[T] = null;
/* JS-Int */
yIml = x;

/* JS-IntAnd */
y[T] = x[T1;

/* JS-Var */
copy(y, X);

/* JS-Arrow */

y[T2] = (x1, y2) = {
var y1 = {}; J1;
var x2 = x[T11(y1);
y2 =y2 || {3};
J2; return y2;

¥

Fig. 32. Predefined JavaScript code.

/* JS-All */

y[T2] = (X, y0) = {
var x0 = x[T11(X);
yo =yo || {};
J; return yo;

b

/% JS-Rcd *x/

y.__defineGetter__(T2, () = {

var x0 = x[T1];

var yo = {}; IJ;

delete this[T];

return this[T] = yo;
Bs

/% JS-Split %/
var y1 = {}; // if yl

1=

z

var y2 = {}; // if y2 =z

J1; J2; J3;

/* JM-Arrow */
z[T] = (p,) = {
y=y Il {}

var y1 = {}; // if yi

x1IT11(p, y1);
x2[T721(p, y2);
J; return y;

b

/* JM-A1l */
z[T] = (X, y) = {
y=y Il {}

var y1 = {3}; // if yl

x1ITTICX, y1);
x2[T2]1(X, y2);
J; return y;

3

/% JM-Rcd x/

z.__defineGetter__(T, () = {

var y = {};

var y1 = {}; // if yl

copy(y1, x1[T1]);

copy(y2, x2[T21);

hH

delete this[T];

return this[T] = y;
s

ACM Trans. Program. Lang

=y
var y2 = {}; // if y2 l=y

=y
var y2 = {}; // if y2 =y

=y
var y2 = {}; // if y2 l=y

63

. Syst.

64

J-Fix
ILx:Azbe = A~ J|z

I;zFfixx:A. e = A ~» code | z

J-ABs

—
T = |B|
Ix:A;)?Fe &= B~ J|y

I;z+Ax:A. e:B = A— B ~» code | z

J-TorTABs
18]
Iz AX*A. e:B = VX*A. B~ @ | z

J-TAprpr
Tinilre = B~ % |y
I;dst-ry:Be A~ H|z:C

T;dstreA = C~» Ji;% |z

J-Rcp
T={t:]Al}
Tinilke = A~ J|y

T;zr{t=¢} = {£: A} ~» code |z

J-MERGE
Tizhey > A Ji |z
Iizhkey = Bw Jo| z
I'-AxB

Iizhe,e0 => A&B ~ Ji3h | z

J-DEF
Tixte = A~ Ji|x
I'x:A;zkeg => Bw J | 2

J-Sus

LinilkFe = A~ Ji | x
x:A<:y:B~ J

Yaozhu Sun, Xuejing Huang, and Bruno C. d. S. Oliveira

J-TorABs
1B[
Iz Ax:A.e:B= A—> B~ @z

J-Arp
Finilke;, > A~ Ji | x
T;nilke; = B~ % |y
IidstFx:Aey:B~~» F|z:C

Tidstreie; = Cw F35:% | 2

J-TABs
T = |B|"
IX*xA;y?re & B~ |y
T;z+ AX*A. e:B = VX*A. B ~ code | z

J-TorRcD
Tre= A T1AT

Tizr{t=e} = {{:A} ~» 2|z

J-Proyj
Finilkte= A~ J |y
yiAed{t)~ f|z:B

Iizref = B~ Ji3%| 2

J-AnNO
Idstre &= A~ J|z

I;dst-re: A= A~ J|z

J-SuBEquiv
A=B
Iidstre = A~ J|z

T;zkx=el;e; = B ~» code | z

Iiyres=B~ J3h |y

T;dstte & B J|z

A.2 Distributive Application and Projection

We have mentioned that function applications (and record projections) have to be specially handled
because of distributive subtyping in F;". To put it simply, we need to additionally consider the cases
where functions (and records) have intersection types or top-like types. Similarly to previous rules,
destinations also guide the code generation. A rule for function applications basically reads as:
given a typing context I' and a destination dst, applying the compiled function in x of type A to the
compiled argument p yields variable z of type B in JavaScript code 7. Depending on whether the
function is A- or A-bound, the argument p can be either a value (y : C) or a type (C).

ACM Trans. Program. Lang. Syst.

Type-Safe Compilation of Dynamic Inheritance via Merging

T;dstrx:Aep~ J|z:B

JA-N1L
I;zkx:Aep~ J|z:B

JA-OrT

65

(Distributive application)
JA-Tor

I;zFkx:Aep~ J|z:B T1AT

T;nilkx: A e p ~ code|z:B

JA-ARROW
—

T =|B|
y:C<iy:A~ F
TidstFx:A—> Bey:A~ J|z:B
T;dst-x:A— Bey:C ~» code|z:B

JA-ARROWOPT
—
A=C T=|B

T;2)?Fx:A— Be y:C ~ code|z:B

JA-ALL
T'rAxC
T =|BY Ts = itoa | C |

I'iy?Fx:Aep s code|z:B

T;zkx:Aep~w @|z:T

JA-ArrROWEQUIV
N
A=sC T = |B|
I5zF-x:A— Bey:C ~ code|z:B

JA-ARROWNIL
—
AsC T =|B|

IinilFx:A—Bey:C ~» code|z:B

JA-ALLOPT
I'+tA=C
T =|B|" Ts = itoa | C |

T;zkx:VYX*A. Be C ~ code | z:B[X +— C]

I;9?Fx:YX*A. Be C ~ code | z: B[X — (]

JA-ALLNIL JA-AND
TFA%C Fizhkx:Aep~ J|z: A
T=|B" Ts = itoa | C | T;zkx:Bepws J|z: B

I;nil - x: VX*A. B e C ~ code | z: B[X — C] Iizkx:A&Bep~ J; 5| z: A&B

As explained in Section 6.4, the rules for record projections are separated to reduce the number of
coercions and improve the performance of generated JavaScript code, although they were combined
with the rules for function applications in the latest formalization of F;" by Fan et al. [2022]. A rule
for record projections basically reads as: projecting the compiled records in x of type A by label ¢
yields variable z of type B in JavaScript code 7.

x:Ae{t} ~» J|z:B
JP-Tor

(Distributive projection)

JP-RcpEQ JP-RcDNEQ
1A[T={t:]Al} h#t, T={f:]A]}

x:{t:A} e {£} ~» code|z:A x:{ti : A} e {&b} ~» @ |z:T

x:Ae{t} ~ @|z:T

JP-AND
x:Ae{t} ~w J|z:A
x:Be {t} w» % |z:HB

x:A&B e {t} » J1;}|z: A &P

A.3 Coercive Subtyping

In rule J-Sus, we check an expression of type A against its supertype B. Since the two types may
correspond to compiled objects of different shapes, a coercion has to be inserted for each subtyping
check. Such a form of subtyping is called coercive subtyping [Luo et al. 2013], in contrast to inclusive
subtyping. A rule for coercive subtyping basically reads as: to upcast a compiled object x of type A
to a compiled object y of type B, we need to insert a coercion in JavaScript code 7. The umbrella
rule has three variants because of the optimization of boxing/unboxing (see Section 6.4).

ACM Trans. Program. Lang. Syst.

66 Yaozhu Sun, Xuejing Huang, and Bruno C. d. S. Oliveira

x:A<:y:Bw J (Coercive subtyping)
JSO-INT JS0-VAr
JS0-Sus T=1Z| T =|X]|
x:A<t y:Bw J x: A<t y:Z W J x: A<ty X w
x:A<:y:B~w J x:A<:y:Z ~» code x:A<:y:X ~ code

As explained in Section 6.4, we add an extra flag to help optimize coercions for subtyping between
equivalent types: <:* indicates that the optimization rule JS-EQu1v can apply, while <:™ not.

xtA<*® y:Bw J (Coercive subtyping)
JS-Equiv JS-Tor JS-Bot
A=B 1B[T =|A|
x:A<* y:B ~ code x:A<* y:B~ @ x:1<* y:A ~ code
JS-INTAND
JS-InT T=1Z JS-Var
x:Z <t y:Z ~» code x:Z <" y:Z ~ code x:X <* y:X ~ code
JS-ArRrOW
—
Ty = | Az JS-ALL
= . v
Tg = |Bz| Ts = itoa | Al | T1 = |A2|
x: By <: B%1 1A v _71 T, = |B2|V By <: Ay
XZIA2<:yleQ’\N>_72 xO:Az<:y0:B2«~>]
x:A; — Ay < y:B; — By ~ code x:VXxA;. Ay <:* y:VYXxB. By ~ code
JS-SpLiT
JS-Rcp Bi< B> By
le{f|A|} y12B11>ZZB<y22B2'VV>j3
T, ={¢:|B|} x:A<* y:B w J JS-AnDL
Xo:A<:yp:Bw J x:A<® By w Jy xt A< y:Cw J
x:{t: A} <* y:{t:B} ~ code x:A<* z:B ~ code x:A&B<T y:C w J
JS-ANDR

x:B<:m y:Cw ¥
x:A&B<™ y:C w J

There are some auxiliary rules called coercive merging for rule JS-Spr1T. These rules mean that if
the splitting relation A <« C > B holds, we can merge the compiled objects x of type A and y of
type B back into a single object z of type C in JavaScript code J. Such merging is necessary after
splitting the supertype distributively. For example, consider the following derivation of subtyping:

T —Int < T — Int&Bool > T — Bool
T — Int & String & Bool <: T — Int T — Int & String & Bool <: T — Bool

T — Int & String & Bool <: T — Int & Bool

After splitting, the compiled object would have two fields with labels "fun_int" and "fun_bool",
but we expect only one field with label "fun_(int&bool)". Rule JM-ArRrow handles this case and
merge the two fields back into one.

The notation may be misleading, but note that here only the variable name z is given (i.e. input)
while variable names x and y are generated by the rules (i.e. output). This is because rule JM-AND

ACM Trans. Program. Lang. Syst.

Type-Safe Compilation of Dynamic Inheritance via Merging 67

reuses the variable name z to also serve as x and y, which makes the caller perform more efficient
in-place updates. Not to make it more confusing but we have to emphasize that the discussion
is only about the variable name rather than the contents of the variable. Having a closer look at
rule JS-SpriT will help to better understand our design. Below the judgment of coercive merging,
the generated variable names (y; and y, in the case) are used to generate the coercions (in } and
7). The coercions are actually executed before the coercive merging (in };) in generated JavaScript.
To avoid y; and y, from being initialized more than once, some extra checks are performed when
generating JavaScript code for rules JS-SpriT, JM-ArRROW, JM-ALL, and JM-Rcb.

‘x:Al> z:C < y:Bw]‘ (Coercive merging)
JM-ARrROW
-
T =|B|
— —
MLA T = B T; = |B;|
JM-AnD V1:B > y:B < y:B w ¥
z:A> z:A&B < z:B~~ @ x1:A—> B > z:A—> B < x:A— B, v code
JM-ALL
T =|BY
Ty =|B|" T, = |By|”
Vi:Bi> y:B< y:B w
x1: VX*A. By > z:VYX*A.B <4 x3 : VX*A. B, ~» code
JM-Rcp
T=A{¢t:|Al}
T ={t: A}
T, = {t: Az}
VA D> y:A<d ypiA w J
x1:{f: A} > z:{t:A} < xp:{f:A} ~ code
Acknowledgments

We thank Utkarsh Dhandhania for his contribution to the CP compiler. We are grateful to Jonathan
Aldrich and the anonymous reviewers for their constructive feedback, which helped us improve
the paper. This work is supported by Hong Kong Research Grant Council under project number
17209821.

References

Jo@o Alpuim, Bruno C. d. S. Oliveira, and Zhiyuan Shi. 2017. Disjoint Polymorphism. In ESOP. doi:10.1007/978-3-662-54434-
1.1

Sven Apel, Don Batory, Christian Késtner, and Gunter Saake. 2013a. Feature-Oriented Software Product Lines: Concepts and
Implementation. Springer. doi:10.1007/978-3-642-37521-7

Sven Apel and Christian Kastner. 2009. An Overview of Feature-Oriented Software Development. J. Object Technol. 8, 5
(2009). doi:10.5381/jot.2009.8.5.¢5

Sven Apel, Christian Késtner, and Christian Lengauer. 2013b. Language-Independent and Automated Software Composition:
The FeatureHouse Experience. IEEE Trans. Software Eng. 39, 1 (2013). doi:10.1109/TSE.2011.120

Sven Apel, Thomas Leich, Marko Rosenmiiller, and Gunter Saake. 2005. FeatureC++: On the Symbiosis of Feature-Oriented
and Aspect-Oriented Programming. In GPCE. doi:10.1007/11561347 10

Ivica Aracic, Vaidas Gasiunas, Mira Mezini, and Klaus Ostermann. 2006. An overview of Caesar]. Trans. Aspect Oriented
Softw. Dev. 1 (2006). doi:10.1007/11687061_5

Henk Barendregt, Mario Coppo, and Mariangiola Dezani-Ciancaglini. 1983. A Filter Lambda Model and the Completeness
of Type Assignment. J. Symb. Log. 48, 4 (1983). doi:10.2307/2273659

ACM Trans. Program. Lang. Syst.

https://doi.org/10.1007/978-3-662-54434-1_1
https://doi.org/10.1007/978-3-662-54434-1_1
https://doi.org/10.1007/978-3-642-37521-7
https://doi.org/10.5381/jot.2009.8.5.c5
https://doi.org/10.1109/TSE.2011.120
https://doi.org/10.1007/11561347_10
https://doi.org/10.1007/11687061_5
https://doi.org/10.2307/2273659

68 Yaozhu Sun, Xuejing Huang, and Bruno C. d. S. Oliveira

Kim Barrett, Bob Cassels, Paul Haahr, David A. Moon, Keith Playford, and P. Tucker Withington. 1996. A Monotonic
Superclass Linearization for Dylan. In OOPSLA. doi:10.1145/236337.236343

Don Batory, Jacob Neal Sarvela, and Axel Rauschmayer. 2004. Scaling Step-Wise Refinement. IEEE Trans. Software Eng. 30, 6
(2004). doi:10.1109/TSE.2004.23

Lorenzo Bettini, Ferruccio Damiani, and Ina Schaefer. 2013. Compositional Type Checking of Delta-Oriented Software
Product Lines. Acta Informatica 50, 2 (2013). doi:10.1007/s00236-012-0173-z

Xuan Bi and Bruno C. d. S. Oliveira. 2018. Typed First-Class Traits. In ECOOP. doi:10.4230/LIPIcs. ECOOP.2018.9

Xuan Bi, Bruno C. d. S. Oliveira, and Tom Schrijvers. 2018. The Essence of Nested Composition. In ECOOP. doi:10.4230/
LIPIcs.ECOOP.2018.22

Xuan Bi, Ningning Xie, Bruno C. d. S. Oliveira, and Tom Schrijvers. 2019. Distributive Disjoint Polymorphism for Composi-
tional Programming. In ESOP. do0i:10.1007/978-3-030-17184-1_14

Dariusz Biernacki and Piotr Polesiuk. 2015. Logical Relations for Coherence of Effect Subtyping. In TLCA. doi:10.4230/
LIPIcs.TLCA.2015.107

Gilad Bracha and William Cook. 1990. Mixin-based Inheritance. In OOPSLA/ECOOP. doi:10.1145/97945.97982

Gilad Bracha, Peter von der Ahé, Vassili Bykov, Yaron Kashai, William Maddox, and Eliot Miranda. 2010. Modules as Objects
in Newspeak. In ECOOP. doi:10.1007/978-3-642-14107-2_20

Kim Bruce, Luca Cardelli, Giuseppe Castagna, The Hopkins Objects Group, Gary T. Leavens, and Benjamin Pierce. 1995. On
Binary Methods. Theory Pract. Object Sys. 1, 3 (1995). doi:10.1002/j.1096-9942.1995.tb00019.x

Kim B. Bruce. 2002. Foundations of Object-Oriented Languages: Types and Semantics. MIT press.

Kim B. Bruce, Luca Cardelli, and Benjamin C. Pierce. 1999. Comparing Object Encodings. Inf. Comput. 155, 1-2 (1999).
d0i:10.1006/inc0.1999.2829

Luca Cardelli and John C. Mitchell. 1991. Operations on Records. Math. Struct. Comput. Sci. 1, 1 (1991). doi:10.1017/
50960129500000049

Luca Cardelli and Peter Wegner. 1985. On Understanding Types, Data Abstraction, and Polymorphism. ACM Comput. Surv.
17, 4 (1985). doi:10.1145/6041.6042

Craig Chambers. 1992. The Design and Implementation of the SELF Compiler, an Optimizing Compiler for Object-Oriented
Programming Languages. Ph. D. Dissertation. Stanford University.

Dave Clarke, Sophia Drossopoulou, James Noble, and Tobias Wrigstad. 2007. Tribe: A Simple Virtual Class Calculus. In
AOSD. doi:10.1145/1218563.1218578

William Cook and Jens Palsberg. 1989. A Denotational Semantics of Inheritance and Its Correctness. In OOPSLA. doi:10.
1145/74878.74922

William R. Cook, Walter L. Hill, and Peter S. Canning. 1990. Inheritance Is Not Subtyping. In POPL. doi:10.1145/96709.96721

Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth Zadeck. 1991. Efficiently Computing
Static Single Assignment Form and the Control Dependence Graph. ACM Trans. Program. Lang. Syst. 13, 4 (1991).
doi:10.1145/115372.115320

Ferruccio Damiani, Luca Padovani, Ina Schaefer, and Christoph Seidl. 2018. A Core Calculus for Dynamic Delta-Oriented
Programming. Acta Informatica 55, 4 (2018). doi:10.1007/s00236-017-0293-6

N. G. de Bruijn. 1972. Lambda Calculus Notation with Nameless Dummies, a Tool for Automatic Formula Manipulation,
with Application to the Church-Rosser Theorem. Indagationes Mathematicae (Proceedings) 75, 5 (1972). doi:10.1016/1385-
7258(72)90034-0

Karel Driesen, Urs Holzle, and Jan Vitek. 1995. Message Dispatch on Pipelined Processors. In ECOOP. doi:10.1007/3-540-
49538-X_13

Stéphane Ducasse, Oscar Nierstrasz, Nathanael Schérli, Roel Wuyts, and Andrew P. Black. 2006. Traits: A Mechanism for
Fine-Grained Reuse. ACM Trans. Program. Lang. Syst. 28, 2 (2006). doi:10.1145/1119479.1119483

Jana Dunfield. 2014. Elaborating Intersection and Union Types. J Funct. Program. 24, 2-3 (2014). doi:10.1017/
50956796813000270

Jana Dunfield and Neel Krishnaswami. 2021. Bidirectional Typing. ACM Comput. Surv. 54, 5 (2021). doi:10.1145/3450952

ECMA. 1999. ECMA-262 3rd Edition, ECMAScript Language Specification. https://ecma-international.org/wp-content/
uploads/ECMA-262_3rd_edition_december_1999.pdf

ECMA. 2015. ECMA-262 6th Edition, ECMAScript 2015 Language Specification. https://262.ecma-international.org/6.0/

Erik Ernst. 2000. gbeta — a Language with Virtual Attributes, Block Structure, and Propagating, Dynamic Inheritance. Ph.D.
Dissertation. Aarhus University. doi:10.7146/dpb.v29i549.7654

Erik Ernst. 2001. Family Polymorphism. In ECOOP. doi:10.1007/3-540-45337-7_17

Erik Ernst. 2002. Safe Dynamic Multiple Inheritance. Nordic J. Comput. 9, 3 (2002).

Erik Ernst. 2004. The Expression Problem, Scandinavian Style. In MASPEGHI@ECOOP. do0i:10.1007/978-3-540-30554-5_11

Erik Ernst, Klaus Ostermann, and William R. Cook. 2006. A Virtual Class Calculus. In POPL. doi:10.1145/1111037.1111062

ACM Trans. Program. Lang. Syst.

https://doi.org/10.1145/236337.236343
https://doi.org/10.1109/TSE.2004.23
https://doi.org/10.1007/s00236-012-0173-z
https://doi.org/10.4230/LIPIcs.ECOOP.2018.9
https://doi.org/10.4230/LIPIcs.ECOOP.2018.22
https://doi.org/10.4230/LIPIcs.ECOOP.2018.22
https://doi.org/10.1007/978-3-030-17184-1_14
https://doi.org/10.4230/LIPIcs.TLCA.2015.107
https://doi.org/10.4230/LIPIcs.TLCA.2015.107
https://doi.org/10.1145/97945.97982
https://doi.org/10.1007/978-3-642-14107-2_20
https://doi.org/10.1002/j.1096-9942.1995.tb00019.x
https://doi.org/10.1006/inco.1999.2829
https://doi.org/10.1017/S0960129500000049
https://doi.org/10.1017/S0960129500000049
https://doi.org/10.1145/6041.6042
https://doi.org/10.1145/1218563.1218578
https://doi.org/10.1145/74878.74922
https://doi.org/10.1145/74878.74922
https://doi.org/10.1145/96709.96721
https://doi.org/10.1145/115372.115320
https://doi.org/10.1007/s00236-017-0293-6
https://doi.org/10.1016/1385-7258(72)90034-0
https://doi.org/10.1016/1385-7258(72)90034-0
https://doi.org/10.1007/3-540-49538-X_13
https://doi.org/10.1007/3-540-49538-X_13
https://doi.org/10.1145/1119479.1119483
https://doi.org/10.1017/S0956796813000270
https://doi.org/10.1017/S0956796813000270
https://doi.org/10.1145/3450952
https://ecma-international.org/wp-content/uploads/ECMA-262_3rd_edition_december_1999.pdf
https://ecma-international.org/wp-content/uploads/ECMA-262_3rd_edition_december_1999.pdf
https://262.ecma-international.org/6.0/
https://doi.org/10.7146/dpb.v29i549.7654
https://doi.org/10.1007/3-540-45337-7_17
https://doi.org/10.1007/978-3-540-30554-5_11
https://doi.org/10.1145/1111037.1111062

Type-Safe Compilation of Dynamic Inheritance via Merging 69

Andong Fan, Xuejing Huang, Han Xu, Yaozhu Sun, and Bruno C. d. S. Oliveira. 2022. Direct Foundations for Compositional
Programming. In ECOOP. doi:10.4230/LIPIcs. ECOOP.2022.18

Benedict R. Gaster and Mark P. Jones. 1996. A Polymorphic Type System for Extensible Records and Variants. Technical
Report NOTTCS-TR-96-3. University of Nottingham.

Neal Glew. 1999. Type Dispatch for Named Hierarchical Types. In ICFP. do0i:10.1145/317636.317797

Robert Griesemer, Raymond Hu, Wen Kokke, Julien Lange, Ian Lance Taylor, Bernando Toninho, Philip Wadler, and Nobuko
Yoshida. 2020. Featherweight Go. In OOPSLA. doi:10.1145/3428217

Svein Hallsteinsen, Mike Hinchey, Sooyong Park, and Klaus Schmid. 2008. Dynamic Software Product Lines. Computer 41,
4 (2008). doi:10.1109/MC.2008.123

Robert Harper and Benjamin Pierce. 1991. A Record Calculus Based on Symmetric Concatenation. In POPL. doi:10.1145/
99583.99603

Xuejing Huang, Jinxu Zhao, and Bruno C. d. S. Oliveira. 2021. Taming the Merge Operator. J. Funct. Program. 31 (2021).
d0i:10.1017/50956796821000186

Paul Hudak. 1998. Modular Domain Specific Languages and Tools. In ICSR. doi:10.1109/ICSR.1998.685738

Urs Holzle, Craig Chambers, and David Ungar. 1991. Optimizing Dynamically-Typed Object-Oriented Languages With
Polymorphic Inline Caches. In ECOOP. doi:10.1007/BFb0057013

Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. 2001. Featherweight Java: A Minimal Core Calculus for Java and
GJ. ACM Trans. Program. Lang. Syst. 23, 3 (2001). doi:10.1145/503502.503505

Mark P. Jones. 1994. A Theory of Qualified Types. Sci. Comput. Program. 22, 3 (1994). doi:10.1016/0167-6423(94)00005-0

Anastasiya Kravchuk-Kirilyuk, Gary Feng, Jonas Iskander, Yizhou Zhang, and Nada Amin. 2024. Persimmon: Nested Family
Polymorphism with Extensible Variant Types. In OOPSLA. doi:10.1145/3649836

Christian Kastner, Sven Apel, and Klaus Ostermann. 2011. The Road to Feature Modularity?. In FOSD@SPLC. doi:10.1145/
2019136.2019142

Joseph Lee, Jonathan Aldrich, Troy Shaw, and Alex Potanin. 2015. A Theory of Tagged Objects. In ECOOP. doi:10.4230/
LIPIcs. ECOOP.2015.174

Daan Leijen. 2004. First-Class Labels for Extensible Rows. Technical Report UU-CS-2004-051. Utrecht University.

Daan Leijen. 2005. Extensible Records with Scoped Labels. In TFP.

Roberto E. Lopez-Herrejon, Don Batory, and William Cook. 2005. Evaluating Support for Features in Advanced Modulariza-
tion Technologies. In ECOOP. doi:10.1007/11531142_8

Zhaohui Luo, Sergei Soloviev, and Tao Xue. 2013. Coercive Subtyping: Theory and Implementation. Inf. Comput. 223 (2013).
d0i:10.1016/j.ic.2012.10.020

Ole Lehrmann Madsen and Birger Megller-Pedersen. 1989. Virtual Classes: A Powerful Mechanism in Object-Oriented
Programming. In OOPSLA. doi:10.1145/74877.74919

Ole Lehrmann Madsen, Birger Moller-Pedersen, and Kristen Nygaard. 1993. Object-Oriented Programming in the BETA
Programming Language. Addison-Wesley.

Koar Marntirosian, Tom Schrijvers, Bruno C. d. S. Oliveira, and Georgios Karachalias. 2020. Resolution as Intersection
Subtyping via Modus Ponens. In OOPSLA. doi:10.1145/3428274

Sean McDirmid, Matthew Flatt, and Wilson C. Hsieh. 2001. Jiazzi: New-Age Components for Old-Fashioned Java. In OOPSLA.
doi:10.1145/504282.504298

Microsoft. 2012. TypeScript. https://www.typescriptlang.org

Leonid Mikhajlov and Emil Sekerinski. 1998. A Study of The Fragile Base Class Problem. In ECOOP. doi:10.1007/BFb0054099

Nathaniel Nystrom, Stephen Chong, and Andrew C. Myers. 2004. Scalable Extensibility via Nested Inheritance. In OOPSLA.
doi:10.1145/1028976.1028986

Nathaniel Nystrom, Xin Qi, and Andrew C. Myers. 2006. J&: Nested Intersection for Scalable Software Composition. In
OOPSLA. doi:10.1145/1167473.1167476

Martin Odersky and Matthias Zenger. 2005. Scalable Component Abstractions. In OOPSLA. doi:10.1145/1094811.1094815

Atsushi Ohori. 1995. A Polymorphic Record Calculus and Its Compilation. ACM Trans. Program. Lang. Syst. 17, 6 (1995).
doi:10.1145/218570.218572

Bruno C. d. S. Oliveira and William R. Cook. 2012. Extensibility for the Masses: Practical Extensibility with Object Algebras.
In ECOOP. doi:10.1007/978-3-642-31057-7_2

Bruno C. d. S. Oliveira, Zhiyuan Shi, and Jodo Alpuim. 2016. Disjoint Intersection Types. In ICFP. doi:10.1145/2951913.2951945

Bruno C. d. S. Oliveira, Tijs van der Storm, Alex Loh, and William R. Cook. 2013. Feature-Oriented Programming with
Object Algebras. In ECOOP. doi:10.1007/978-3-642-39038-8_2

Benjamin C. Pierce. 2002. Types and Programming Languages. MIT Press.

Benjamin C. Pierce and David N. Turner. 2000. Local Type Inference. ACM Trans. Program. Lang. Syst. 22, 1 (2000).
doi:10.1145/345099.345100

Christian Prehofer. 1997. Feature-Oriented Programming: A Fresh Look at Objects. In ECOOP. doi:10.1007/BFb0053389

ACM Trans. Program. Lang. Syst.

https://doi.org/10.4230/LIPIcs.ECOOP.2022.18
https://doi.org/10.1145/317636.317797
https://doi.org/10.1145/3428217
https://doi.org/10.1109/MC.2008.123
https://doi.org/10.1145/99583.99603
https://doi.org/10.1145/99583.99603
https://doi.org/10.1017/S0956796821000186
https://doi.org/10.1109/ICSR.1998.685738
https://doi.org/10.1007/BFb0057013
https://doi.org/10.1145/503502.503505
https://doi.org/10.1016/0167-6423(94)00005-0
https://doi.org/10.1145/3649836
https://doi.org/10.1145/2019136.2019142
https://doi.org/10.1145/2019136.2019142
https://doi.org/10.4230/LIPIcs.ECOOP.2015.174
https://doi.org/10.4230/LIPIcs.ECOOP.2015.174
https://doi.org/10.1007/11531142_8
https://doi.org/10.1016/j.ic.2012.10.020
https://doi.org/10.1145/74877.74919
https://doi.org/10.1145/3428274
https://doi.org/10.1145/504282.504298
https://www.typescriptlang.org
https://doi.org/10.1007/BFb0054099
https://doi.org/10.1145/1028976.1028986
https://doi.org/10.1145/1167473.1167476
https://doi.org/10.1145/1094811.1094815
https://doi.org/10.1145/218570.218572
https://doi.org/10.1007/978-3-642-31057-7_2
https://doi.org/10.1145/2951913.2951945
https://doi.org/10.1007/978-3-642-39038-8_2
https://doi.org/10.1145/345099.345100
https://doi.org/10.1007/BFb0053389

70 Yaozhu Sun, Xuejing Huang, and Bruno C. d. S. Oliveira

Tillmann Rendel, Jonathan Immanuel Brachthiuser, and Klaus Ostermann. 2014. From Object Algebras to Attribute
Grammars. In OOPSLA. doi:10.1145/2660193.2660237

John C. Reynolds. 1997. Design of the Programming Language Forsythe. In Algol-like Languages. Vol. 1. Chapter 8.
doi:10.1007/978-1-4612-4118-8_9

Chieri Saito, Atsushi Igarashi, and Mirko Viroli. 2008. Lightweight Family Polymorphism. J. Funct. Program. 18, 3 (2008).
do0i:10.1017/S0956796807006405

Ina Schaefer, Lorenzo Bettini, Viviana Bono, Ferruccio Damiani, and Nico Tanzarella. 2010. Delta-Oriented Programming of
Software Product Lines. In SPLC. d0i:10.1007/978-3-642-15579-6_6

Amir Shaikhha, Andrew Fitzgibbon, Simon Peyton Jones, and Dimitrios Vytiniotis. 2017. Destination-Passing Style for
Efficient Memory Management. In FHPC@ICFP. doi:10.1145/3122948.3122949

Mark Shields and Erik Meijer. 2001. Type-Indexed Rows. In POPL. doi:10.1145/360204.360230

T. Stephen Strickland, Christos Dimoulas, Asumu Takikawa, and Matthias Felleisen. 2013. Contracts for First-Class Classes.
ACM Trans. Program. Lang. Syst. 35, 3 (2013). doi:10.1145/2518189

Yaozhu Sun. 2025. Compositional Programming in Action. Ph.D. Dissertation. The University of Hong Kong. https:
//hub.hku.hk/handle/10722/358307

Yaozhu Sun, Utkarsh Dhandhania, and Bruno C. d. S. Oliveira. 2022. Compositional Embeddings of Domain-Specific
Languages. In OOPSLA. doi:10.1145/3563294

W. W. Tait. 1967. Intensional Interpretations of Functionals of Finite Type I. J. Symb. Log. 32, 2 (1967). doi:10.2307/2271658

Antero Taivalsaari. 1996. On the Notion of Inheritance. ACM Comput. Surv. 28, 3 (1996). doi:10.1145/243439.243441

Asumu Takikawa, T. Stephen Strickland, Christos Dimoulas, Sam Tobin-Hochstadt, and Matthias Felleisen. 2012. Gradual
Typing for First-Class Classes. In OOPSLA. doi:10.1145/2384616.2384674

David Ungar and Randall B. Smith. 1987. Self: The Power of Simplicity. In OOPSLA. doi:10.1145/38765.38828

Philip Wadler. 1998. The Expression Problem. Posted on the Java Genericity mailing list. https://homepages.inf.ed.ac.uk/
wadler/papers/expression/expression.txt

Mitchell Wand. 1991. Type Inference for Record Concatenation and Multiple Inheritance. Inf. Comput. 93, 1 (1991).
do0i:10.1016/0890-5401(91)90050-C

Ningning Xie, Bruno C. d. S. Oliveira, Xuan Bi, and Tom Schrijvers. 2020. Row and Bounded Polymorphism via Disjoint
Polymorphism. In ECOOP. doi:10.4230/LIPIcs. ECOOP.2020.27

Han Xu, Xuejing Huang, and Bruno C. d. S. Oliveira. 2023. Making a Type Difference: Subtraction on Intersection Types as
Generalized Record Operations. In POPL. doi:10.1145/3571224

Matthias Zenger and Martin Odersky. 2005. Independently Extensible Solutions to the Expression Problem. In FOOL@POPL.

Weixin Zhang, Yaozhu Sun, and Bruno C. d. S. Oliveira. 2021. Compositional Programming. ACM Trans. Program. Lang.
Syst. 43, 3 (2021). doi:10.1145/3460228

Yizhou Zhang and Andrew C. Myers. 2017. Familia: Unifying Interfaces, Type Classes, and Family Polymorphism. In
OOPSLA. doi:10.1145/3133894

ACM Trans. Program. Lang. Syst.

https://doi.org/10.1145/2660193.2660237
https://doi.org/10.1007/978-1-4612-4118-8_9
https://doi.org/10.1017/S0956796807006405
https://doi.org/10.1007/978-3-642-15579-6_6
https://doi.org/10.1145/3122948.3122949
https://doi.org/10.1145/360204.360230
https://doi.org/10.1145/2518189
https://hub.hku.hk/handle/10722/358307
https://hub.hku.hk/handle/10722/358307
https://doi.org/10.1145/3563294
https://doi.org/10.2307/2271658
https://doi.org/10.1145/243439.243441
https://doi.org/10.1145/2384616.2384674
https://doi.org/10.1145/38765.38828
https://homepages.inf.ed.ac.uk/wadler/papers/expression/expression.txt
https://homepages.inf.ed.ac.uk/wadler/papers/expression/expression.txt
https://doi.org/10.1016/0890-5401(91)90050-C
https://doi.org/10.4230/LIPIcs.ECOOP.2020.27
https://doi.org/10.1145/3571224
https://doi.org/10.1145/3460228
https://doi.org/10.1145/3133894

	Abstract
	1 Introduction
	2 Dynamic Inheritance, Overriding, and Type Safety
	2.1 Class Inheritance and Structural Typing
	2.2 Unsafe Overriding with Dynamic Inheritance
	2.3 Nested Classes via First-Class Classes
	2.4 Virtual Classes and Family Polymorphism
	2.5 Problem Statement and Paper Roadmap

	3 Dynamic Inheritance in CP
	3.1 Merges, Disjointness, and the Treatment of Conflicts
	3.2 From Merging to Inheritance
	3.3 Dynamic Inheritance in CP
	3.4 Family Polymorphism in CP
	3.5 Discussion

	4 Key Ideas of the CP Compiler
	4.1 Dunfield's Elaboration Semantics
	4.2 Our Representation of Merges
	4.3 Reducing Coercions for Equivalent Types
	4.4 Necessity of Coercions
	4.5 Implementation in JavaScript

	5 Formalization of the Compilation Scheme
	5.1 Target Calculus with Extensible Records
	5.2 Source Calculus and Elaboration
	5.3 Duplicates in Translation and Coherence of Subtyping
	5.4 Coherence Proof for NeColus and Its Adaptation to Our Source Language

	6 Implementation Details
	6.1 From Elaboration Semantics to JavaScript Code Generation
	6.2 Parametric Polymorphism
	6.3 Lazy Evaluation
	6.4 Important Optimizations
	6.5 Selected Rules for Destination-Passing Style
	6.6 Separate Compilation

	7 Empirical Evaluation
	7.1 Ablation Study on Optimizations
	7.2 Comparison with Handwritten JavaScript Code

	8 Related Work
	9 Conclusion
	A Compilation Scheme from Fi+ to JavaScript
	A.1 Type-Directed Compilation
	A.2 Distributive Application and Projection
	A.3 Coercive Subtyping

	Acknowledgments
	References

