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Inheritance is a key concept in many programming languages. Dynamically typed languages, such as Java-

Script, often support powerful forms of dynamic inheritance. However, dynamic inheritance poses significant

challenges for static typing. Most statically typed languages only provide static inheritance to achieve type

safety at the cost of flexibility.

This paper presents a compiler for the CP language, which is a statically typed language that supports

dynamic inheritance via a merge operator and also has an expressive form of parametric polymorphism. The

merge operator enables a form of multiple inheritance and first-class classes, as well as virtual classes and

family polymorphism. With these features, CP allows the development of highly modular and loosely coupled

components. However, the efficient compilation of CP code is non-trivial, especially if separate compilation

is desired. In particular, subtyping in CP is coercive for type safety, which poses significant challenges in

obtaining an efficient compilation scheme. We show how CP is compilable to languages supporting extensible

records or similar data structures, where record labels are generated from types for efficient lookup on merges.

The main ideas of the compilation scheme are formalized in Coq and proven to be type-safe. The concrete

implementation of the CP compiler targets JavaScript, where records are modeled as JavaScript objects. We

conduct an empirical evaluation with various benchmarks and evaluate the impact of several CP-specific

optimizations. With our optimizations, CP can be orders of magnitude faster than with a naive compilation

scheme for merges, obtaining performance on par with class-based JavaScript programs.

CCS Concepts: • Software and its engineering → Compilers; Inheritance; Object oriented languages.

Additional Key Words and Phrases: Compositional Programming, Separate Compilation

1 Introduction
Many programming language constructs are first-class. First-class functions are a key construct of

functional programming. Similarly, objects are first-class in object-oriented programming (OOP).

First-class constructs enable the corresponding values to be abstracted by variables, passed as

arguments, or returned by functions or methods.

While classes are pervasive in most OOP languages, first-class classes are much less studied,
and they are rarely supported in mainstream statically typed OOP languages. Languages such as

Java, C#, and Swift, just to name a few, do not support first-class classes. In these languages, no

variables can abstract over classes, and thus a class cannot pick which class to inherit from at run

time. Nevertheless, some dynamically typed languages treat classes as first-class constructs and
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class A {

m() { return 48 }

}

class B extends A {

m() { return "Hi" }

}

Fig. 1. JavaScript allows unconstrained overriding, whereas TypeScript’s type system attempts to prevent

type-unsafe overriding and statically rejects the above example.

allow dynamic inheritance. Taking JavaScript
1
as an example, a base class can be passed as an

argument, and the inheritance hierarchy is determined at run time, after the application of the

function happens:

function Mixin(Base) {

return class extends Base {

greet() { alert('Hello, world!') }

};

}

First-class classes offer powerful and flexible abstraction mechanisms for programmers. For instance,

mixins [Bracha and Cook 1990], which are class-like abstractions that can be mixed into other

classes to add new features, are encodable via first-class classes and dynamic inheritance. In our

example, the Mixin function creates a class that inherits from Base and adds a greet method. At

run time, we can apply Mixin to different base classes that need greet. Dynamic inheritance rejects

the common assumption that inheritance hierarchies are fixed at compile time, providing a greater

degree of flexibility compared to static inheritance. Furthermore, first-class classes provide natural

support for nested classes: classes defined within another class, or even inside methods or functions

as in the Mixin example. Nested classes can access definitions and methods in the surrounding

lexical scope. In JavaScript, nested classes are supported via first-class classes. Some other OOP

languages, such as Java, support nested classes without supporting first-class classes.

To ensure type-safe inheritance, an important concern is how to deal with overriding and, more

generally, method conflicts. JavaScript deals with method conflicts by employing implicit overriding.
That is, a method in a subclass will override a method in the superclass if the superclass contains

a method with the same name. Otherwise, a new method is defined in the subclass if no method

with the same name exists in the superclass. In JavaScript or other dynamically typed languages,

overriding is completely unconstrained, allowing the overriding method to return a different type.

An example is shown in Fig. 1. Such overriding is not type-safe if an object of the subclass B is to be

used in the place where the superclass A is expected, since the method m in A is expected to return a

number instead of a string.

Since TypeScript is a superset of JavaScript, it adopts the same implicit overriding approach.

However, like most statically typed OOP languages, TypeScript places restrictions on overriding

to ensure type safety. In TypeScript, overriding methods must have types compatible with the

overridden ones, in order to allow for the safe use of a subclass in the place of a superclass. Another

possibility is to allow subclasses not to be subtypes of the superclass [Cook et al. 1990], which

is sometimes seen in structurally typed OOP languages. In this case, a subclass may not always

be used in place of a superclass, and a type system can prevent the use of subclasses that are not

subtypes. Nevertheless, this does not imply that overriding can be fully unconstrained, as it is still

possible to have type-safety issues even when inheritance does not imply subtyping.

1
Although object-orientation in JavaScript is originally prototype-based, newer standards (ECMAScript 6+) also support

classes on top of prototypes.
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First-class classes and dynamic inheritance make type-safe overriding much harder. Few statically

typed languages attempt to support such features, and some of the ones that do have type-unsound

designs. For instance, in addition to supporting conventional static inheritance idioms, TypeScript

also supports dynamic inheritance, but its type system cannot always ensure type-safe overriding.

With dynamic inheritance, the exact type of the superclass is unknown statically, so it is hard to

guarantee that no method is accidentally overridden with an incompatible type at run time. We

will illustrate this point using examples in TypeScript later in this paper.

Implicit overriding is not the only way to deal with method conflicts. Another possibility is to

detect and prevent conflicts, disallowing any form of implicit overriding. For instance, the trait
model [Ducasse et al. 2006] adopts an approach where implicit overriding is disallowed. With

traits overriding is still possible, but it must be explicitly triggered by the programmer, instead of

being implicitly done by the compiler. For instance, when composing two traits with conflicts, the

composition will be rejected. To resolve conflicts, a programmer can, for example, decide to take

one of the implementations for the method, or provide a new method implementation instead.

Yet another possibility to deal with conflicts is what we call merging in this paper. Merging is

not a new idea and has been used to a certain degree in existing programming language designs.

For instance, merging is central in programming language designs with virtual classes [Clarke et al.
2007; Ernst et al. 2006; Madsen and Møller-Pedersen 1989] and family polymorphism [Ernst 2001;

Saito et al. 2008; Zhang and Myers 2017]. Virtual classes are a form of nested classes. However, the

main feature of virtual classes is that, when a virtual class conflicts with another virtual class with

the same name, the old class is not overridden. Instead, the behaviors of the two classes are merged:
the new class will contain all the methods of the old class as well as the new methods. So, unlike

overriding, merging does not replace existing behaviors. Instead, it preserves existing behaviors

and adds some new ones.
2

The idea of merging can be extended to deal with conventional methods as well. For example, in

a language that adopts merging, code similar to that in Fig. 1 can be accepted. Class Bwould contain

two versions of the method m: one returning a number and the other returning a string. In other

words, merging would act as a kind of overloading in this case, enabling two methods with the

same name but different types to coexist in the same class. Invocations of m could be disambiguated

by the surrounding context or, if needed, by the programmer. Of course, in the merging model, the

combination of two methods with the same name and related types would still be problematic, as it

would not be clear how to choose and disambiguate between the two method implementations.

A solution to this problem is to adopt a trait-like model with merging. This model has been

adopted by the CP language [Zhang et al. 2021] and is the focus of this paper. In a trait-like model

with merging, method conflicts are still forbidden, but methods with the same name and disjoint
types (i.e. the types are unrelated) do not create a conflict. In other words, if we compose two traits,

each having a method with the same name and related types, then we get an error due to a method

conflict. However, if the methods have the same name but disjoint types, then the composition

is accepted, and the resulting object will retain the two method implementations. By allowing

merging in the disjoint case, we can express the forms of composition that are required for virtual

classes. In such cases, virtual classes are modeled as fields, and two virtual classes with the same

name but disjoint interfaces (i.e. the types of the virtual class methods) can be merged.

Such a model offers important advantages over designs that adopt implicit overriding instead. A

first advantage is that we can obtain flexible, powerful, and type-safe inheritance models and avoid

2
Strictly speaking, most designs with virtual classes will combine merging with overriding, in the case that the two virtual

classes have conflicting methods. In our discussion, when we describe merging, we assume that the sets of methods in the

two virtual classes are disjoint and, consequently, no overriding takes place.
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many of the restrictions imposed by languages with static inheritance. With merging it is possible

to have a model of inheritance that allows dynamic inheritance and forms of multiple inheritance
and family polymorphism all at once. We are aware of some designs with dynamic inheritance and

first-class classes [Lee et al. 2015; Takikawa et al. 2012], but without family polymorphism. We

are also aware of some designs with both multiple inheritance and family polymorphism [Aracic

et al. 2006; Clarke et al. 2007; Nystrom et al. 2006], but without dynamic inheritance. Except for the

CP language, which is our focus in this paper, the only statically typed language we know that

supports all three features is gbeta [Ernst 2000]. However, gbeta cannot statically guarantee that

every use of dynamic inheritance is type-safe, although Ernst [2002] proves a subset of use cases

to be type-safe. Moreover, separate compilation can only be supported with an inefficient linear

search through super-mixins for inherited attributes. To the best of our knowledge, CP is the only

language that supports all three features in a completely type-safe manner, without compromising

on modular type checking or separate compilation. We believe that this absence in the design space

is because it is hard to have flexible and type-safe designs that support all these features at once.

Because our design is based on the trait model, we also inherit its advantages. In particular,

since merging extends behavior rather than replace behavior, it is less prone to problems such as

the fragile base class problem [Mikhajlov and Sekerinski 1998]. As we shall see, in the presence

of dynamic inheritance, designs based on implicit overriding, such as TypeScript, exacerbate the

fragile base class problem: not only can overriding break invariants of the superclass, but it can also

break type safety! Designs based on a trait-model with merging preserve the behavior of inherited

classes and avoid the issues due to (implicit) overriding.

CP, short for compositional programming [Zhang et al. 2021], is a statically typed language

that supports dynamic inheritance and adopts a trait model with merging. CP-flavored traits

are first-class constructs [Bi and Oliveira 2018]. Thus, dynamic inheritance between traits is

possible. Moreover, trait inheritance in CP is built upon nested composition [Bi et al. 2018], which

enables a form of family polymorphism and virtual classes. The foundations of CP are well studied.

Several statically typed calculi based on disjoint intersection types [Oliveira et al. 2016] and a

merge operator [Dunfield 2014; Reynolds 1997] have been developed with small-step operational

semantics [Fan et al. 2022; Huang et al. 2021] or elaboration semantics [Alpuim et al. 2017; Bi et al.

2018, 2019; Oliveira et al. 2016]. The current implementation of CP by Sun et al. [2022] employs an

interpreter that is built upon the operational semantics studied in past work. Unfortunately, the

interpreter-based implementation is simple but inefficient.

This paper presents a CP compiler, supporting modular type checking and separate compilation.

Our primary source of inspiration comes from the elaboration approach by Dunfield [2014], where

intersection types and merges are compiled into product types and pairs. However, her work lacked

the distributive subtyping rules that are needed to achieve family polymorphism. More importantly,

her focus was on proving type safety, and she did not investigate ways to optimize the coercive

form of subtyping that is required by the elaboration approach. The naive use of coercive subtyping

has a significant impact on performance. Moreover, the choice of pairs in the elaboration means

that, merge lookup, the most common operation on merges, takes linear time in the worst case.

We show how CP code can be compiled to languages supporting extensible records or similar

mechanisms. We choose such targets because many existing languages support extensible records

or closely related mechanisms like hash maps, which can be dynamically extended with new fields.

These data structures are usually highly optimized to enable efficient implementations. This is

useful for obtaining fast lookup for merges in CP, which are used to encode dynamic inheritance,

as well as to model multi-field records. The lookup is type-based, and we employ a compilation

scheme that maps any CP type into a record label, leading to an efficient way to perform lookup

on merges. The concrete implementation of the CP compiler targets JavaScript, where records

ACM Trans. Program. Lang. Syst.
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are modeled as JavaScript objects, and record extension is modeled by JavaScript’s support for

object extension. We also present a number of optimizations and conduct an empirical evaluation

to evaluate our implementation of the CP compiler.

In summary, the contributions of this paper are:

• A compilation scheme for dynamic inheritance and family polymorphism.Wemodel

family-polymorphic dynamic multiple inheritance as nested trait composition via merging

in CP. We propose an efficient compilation scheme that translates merges into extensible

records, where types are used as record labels to perform lookup on merges. We also identify

a class of equivalent types to reduce the number of coercions that are required by subtyping.

• Mechanized type-safety proofs for the compilation scheme. We formalize the compila-

tion scheme as an elaboration from the 𝜆+𝑖 calculus [Bi et al. 2018; Huang et al. 2021] to a

calculus with extensible records called 𝜆𝑟 . We prove that this elaboration is type-safe. Both

the elaboration and its type-safety proofs are mechanized using the Coq proof assistant.

• A compiler for the CP language targeting JavaScript. We implement a compiler for

CP that targets JavaScript, following the ideas of the elaboration into extensible records. In

addition, the compiler also implements several other features of CP, which are not formalized,

including the support for parametric polymorphism and separate compilation.

• Several optimizations and an empirical evaluation.We discuss several optimizations

that we employ in the CP compiler and conduct an empirical evaluation to measure their

impact. Besides, we benchmark the JavaScript code generated by our compiler together with

handwritten JavaScript code.

The Coq proofs, the implementation of the CP compiler, and the benchmark suite are all included

in the supplementary materials, which are available at:

https://github.com/yzyzsun/CP-next/tree/toplas

2 Dynamic Inheritance, Overriding, and Type Safety
There are only a few statically typed languages that support first-class classes and dynamic inheri-

tance, among which are gbeta [Ernst 2000], TypeScript [Microsoft 2012], Typed Racket [Takikawa

et al. 2012], and Wyvern [Lee et al. 2015]. Here we take the most popular one, TypeScript, as the

main example to illustrate the challenges of type-safe dynamic inheritance and reveal significant

limitations of TypeScript’s type system. We will also briefly mention JavaScript and Java to further

illustrate concepts related to first-class classes and dynamic inheritance. Discussions about gbeta,
Typed Racket, and Wyvern can be found in Section 8.

2.1 Class Inheritance and Structural Typing
Classes are the reusable building blocks in most OOP languages. They are reused by inheritance, a

mechanism to create a new class (called a subclass) based on an existing class (called a superclass).
Inheritance enables the reuse of implementations of methods or properties that are already provided

in the superclass. Furthermore, it is possible to override methods of the superclass with new

implementations that are more suitable for the subclass.

To make sure that instances of the subclass can be used in any context where its superclass

is expected, there is usually a requirement that the subclass has a subtype with respect to its

superclass.While inheritance is related to implementations, subtyping is a relation between types. In

many programming languages, class definitions class B extends A {...} introduce both relations

between A and B: class B inherits the implementation from class A, and it also introduces a subtyping

relation between the types of the two classes. For example, type B is required to be a subtype of

type A in TypeScript:

ACM Trans. Program. Lang. Syst.
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class A {}

class B extends A {

m(): number { return 0; }

}

Owing to the same reason, when a method in the superclass is overridden, the new method in the

subclass must have a subtype. For example, the method f in C is overridden by the one in D below:

class C {

f(x: B): number { return x.m(); }

}

class D extends C {

f(x: A): number { return 48; }

}

The overriding is type-safe because the latter method has a subtype of the former’s. According

to the standard subtyping rule for functions, the parameter type is contravariant, and the return

type is covariant. Since A is a supertype of B, the function type (x: A) ⇒ number is a subtype of

(x: B) ⇒ number.

Bivariant subtyping in TypeScript. Perhaps surprisingly, the following code also type-checks:

class E {

f(x: A): number { return 48; }

}

class F extends E {

f(x: B): number { return x.m(); }

}

The parameter type of method f becomes a subtype of that in the superclass, but it still passes the

subtyping check. In other words, TypeScript does not follow the standard type-theoretic treatment

of function subtyping. Instead, TypeScript allows bivariant subtyping for method parameters, where

the type of method parameters being overridden can either be a subtype or a supertype of the

corresponding type in the superclass method. Bivariant subtyping is a well-known source of type

unsoundness. It would lead to a runtime error that could have been prevented statically:

const o: E = new F;

o.f(new A) // Runtime Error!

TypeScript developers are aware of this, but they justify the use of bivariant subtyping by large

numbers of use cases in the libraries that require this functionality.
3
In essence, TypeScript trades

type soundness for flexibility and thus supports a more flexible model of inheritance in some cases.

A type-safe alternative model for structural typing. TypeScript’s class model adopts the approach

that subclasses always generate subtypes of the superclass. Thus, it retains the familiar model that

is common in mainstream nominally typed languages like Java, C#, or Scala, which can be seen as

an advantage for attracting programmers from those languages.

However, unlike these mainstream programming languages, TypeScript is structurally typed.

With structural typing, there is a well-known alternative that would enable the overriding in

class F to be type-safe. As observed by Cook et al. [1990], inheritance is not subtyping. In the

context of a language of classes, this means that sometimes subclasses may not be subtypes of the

superclass. In particular, the parameter of a binary method [Bruce et al. 1995] is supposed to be

an object of the class being defined. In this case, the subclass will covariantly refine the type of

the method parameters, and thus detaching inheritance from subtyping can be helpful. Since there

is no subtyping relation between subclasses and superclasses in an inheritance-is-not-subtyping

approach, the standard contravariant subtyping rule, instead of bivariant subtyping, can be used

for function parameters, thus preventing type-safety issues that arise from bivariant subtyping.

3
https://www.typescriptlang.org/tsconfig#strictFunctionTypes
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If TypeScript adopted an inheritance-is-not-subtyping approach instead, then the code for F

could still type-check, but the subclass F would not be a subtype of its superclass E. Therefore, the

runtime error would be prevented because the line would be rejected with a type error:

const o: E = new F; // Invalid upcast in an inheritance-is-not-subtyping approach!

While type-safe, the inheritance-is-not-subtyping approach departs from the conventional model

adopted by mainstream languages. So, it could be harder for programmers (especially those used to

other mainstream OOP languages) to understand that sometimes subclasses cannot be subtypes.

This is perhaps a reason (among others) for TypeScript not adopting this approach. Nevertheless,

we adopt a model based on inheritance-is-not-subtyping because it allows a more flexible but still
type-safe form of inheritance.

2.2 Unsafe Overriding with Dynamic Inheritance
TypeScript differs from other mainstream OOP languages in that it also supports dynamic inheri-

tance. Dynamic inheritance brings new type-safety considerations with respect to overriding. These

issues are not due to the use of bivariant subtyping and appear to be unknown or undocumented

by the TypeScript implementers. Nevertheless, in order to obtain a type-safe design, we must be

able to address the type-safety issues that may arise from dynamic inheritance. Thus, the purpose

of this subsection is to identify such a problem in TypeScript. We call this problem the inexact
superclass problem, because it arises from a mismatch between the statically expected type of

the superclass and the actual (exact) type of the superclass. In Section 3.3, we will show how this

problem can be addressed in a type-safe manner.

Dynamic inheritance in TypeScript. While JavaScript accepts the unsafe overriding in Fig. 1,

TypeScript detects the type mismatch between the two methods and rejects the code. For top-level

classes and static inheritance, TypeScript’s type system is quite standard and rejects many unsafe

examples. However, the checks that TypeScript does are insufficient for dynamic inheritance, which
is recommended by the TypeScript documentation to implement mixins.

4
We illustrate the issue in

the program in Fig. 2.

Our example follows the guidelines in the TypeScript documentation to type mixins and first-

class classes. First of all, a type Constructor is declared to represent a class. Since its return type is

an empty object type, the type of every class is a subtype of Constructor. In other words, every class

can be used as Base. The function Mixin takes a base class of type TBase and returns a new class that

extends (or overrides) the base class with the method m. Then we obtain class B by applying Mixin

to class A. Note that A already has a method m with a different type, and the other method n relies

on m returning a string. However, the subclass returned by Mixin overrides m with a method that

returns a number instead. Finally, we instantiate the class B and call the method n. A runtime error

occurs because the method m is unexpectedly overridden. In essence, we cannot predict the exact

type of the superclass at compile time, so we cannot prevent the unsafe overriding as statically

typed languages do for second-class classes and static inheritance.

Constrained mixins. The TypeScript documentation also mentions constrained mixins, which
provide finer control on the base class. In a constrained mixin, the base class is known to have

some methods, which is useful for the subclass to safely rely on those methods being present in the

superclass. Constrained mixins are modeled with a generic version of Constructor:

type GConstructor<T = {}> = new (...args: any[]) ⇒ T;

4
https://www.typescriptlang.org/docs/handbook/mixins.html
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type Constructor = new (...args: any[]) ⇒ {};

function Mixin<TBase extends Constructor>(Base: TBase) {

return class extends Base {

m(): number { return 48; } // If m() exists in Base, that one will be overridden.

};

}

class A {

m(): string { return "foobar"; }

n(): string { return this.m().toUpperCase(); }

}

const B = Mixin(A); // We use A as Base, which contains m() with a different type.

(new B).n() // Runtime Error!

Fig. 2. Inexact Superclass Problem: Dynamic inheritance is type-unsafe in TypeScript.

The generic parameter T represents the interface of the base class and defaults to an empty object

type. For example, we can define another mixin that relies on a method called pow:

type Exponentiatable = GConstructor<{ pow: (x: number, y: number) ⇒ number }>;

function AnotherMixin<TBase extends Exponentiatable>(Base: TBase) {

return class extends Base {

cube(x: number) { return this.pow(x, 3); }

};

}

In AnotherMixin, the method cube relies on this.pow, which is declared to be present by the interface

Exponentiatable. Similarly, in the definition of Mixin in Fig. 2, we could declare that TBase extends

some type like GConstructor<AInterface>. Although the base class is constrained by the interface

now, it still does not help with the issue of unsafe overriding. The problem here is that the base

class may contain more methods than the expected interface. For instance, the base class could

contain another method called cube that would return a string, and would be called in the base class

by some other method rubik. Then we could still run into the same problem, if rubik is called from

an object that combines both classes. There is no way in TypeScript to express the constraint that

cube is absent in the base class. Such absence constraints are key to preventing unsafe overriding

in dynamic inheritance while retaining flexibility.

From static to dynamic inheritance. The crucial point in our examples is that dynamic inheritance

has the flexibility to pass a class with a subtype of the expected type for the base class in Mixin.

Languages with static inheritance and second-class classes, like Java or C#, do not have this flexibility.

Subclassing is usually modeled with a construct like class B extends A {...}. In languages with

first-class classes, A can be an arbitrary expression; but in languages with static inheritance, it can

only be a concrete class name. In Java, for instance, a class A is associated both to a type A, which is

the exact interface (or type) of the class, and a corresponding implementation of type A. In other

words, a class declaration has two roles in these languages: declaring an interface and providing an

implementation with exactly that interface. Thus, we can never inherit from an implementation

ACM Trans. Program. Lang. Syst.
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class ANSIString {

constructor(str) {

this.length = str.length;

this.chars = str.split('');

}

Iterator() {

const outer = this;

return class {

index = 0;

hasNext() { return this.index < outer.length; }

next() { return outer.chars[this.index++]; }

};

}

print() {

const it = new (this.Iterator()); // Iterator is dynamically bound.

while (it.hasNext()) alert(it.next());

}

}

Fig. 3. A string iterator in JavaScript using nested classes.

that has a subtype of the superclass type. This avoids the inexact superclass problem that we have

to face with dynamic inheritance in our TypeScript example, at the cost of flexibility.

2.3 Nested Classes via First-Class Classes
Both JavaScript and TypeScript support first-class classes: a class can be defined in various places

including within another class, or even a method. Thus, nested classes come (almost) for free once a

language supports first-class classes. In contrast, some other OOP languages, such as Java, do not

support first-class classes, but they still add support for nested classes as a separate feature.

Nested classes are useful for encapsulation, and usually, they can make use of the definitions

from the outer class. For example, Fig. 3 shows how to model a string-specific iterator as a nested

class in JavaScript. The constructor for the Iterator class is modeled by a factory method. The

method print relies on the nested iterator class to iterate over the characters in the string.

Why not a class field? In JavaScript, the use of the factory method is important to provide access

to this of the outer class. If we declare a class field directly with Iterator = class {...}, we would

not be able to access the properties and methods of ANSIString within Iterator. JavaScript does

not provide a direct way to refer to the outer this from the nested class. That is why we have to

capture the reference to the outer this in a variable outer before using it in the nested class. Then,

the properties declared in the outer class, length for example, can be accessed via outer.length.

The second reason for using a factory method is to make access to super.Iterator possible in a

subclass of ANSIString. In JavaScript, a class field defined by the superclass is not accessible in the

subclass via super. Declaring Iterator as a factory method bypasses the restriction. Although we

do not use super.Iterator in the current example, Section 2.4 will show some use cases.

Overriding nested classes. In JavaScript, the inheritance behavior for nested classes is consistent

with that for methods: they both employ an overriding semantics. This is partly because nested

classes must always be accessed via a property or a method, and then we just use the default
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overriding semantics for them. The ability to override nested classes allows some useful forms of

family polymorphism, as we shall discuss in Section 2.4. However, it is also a problem for type

safety since we can override a class with another class that has an entirely (or partially) different

set of methods. For example, the following code is allowed in JavaScript:

class UTF8String extends ANSIString {

Iterator() { return class {

forEach(callback) { /* ... */ }

}; }

}

(new UTF8String("Hi")).print(); // Runtime Error!

The class Iterator nested in ANSIString contains two methods hasNext and next, while the one

nested in UTF8String only contains a different method forEach. After overriding, print triggers a

runtime error since it depends on the aforementioned two methods. Therefore, code relying on

nested classes having a certain interface can be completely broken by an override that replaces the

class with some other incompatible class.

Nested classes in TypeScript. TypeScript also attempts to prevent type-unsafe overriding for

nested classes. Similar code will be rejected by TypeScript because of the type incompatibility

between the two nested classes. However, with dynamic inheritance, the type system still suffers

from similar issues to those shown in Fig. 2:

function Mixin<TBase extends Constructor>(Base: TBase) {

return class extends Base {

Iterator() { return class {

forEach(callback: (_: string) ⇒ void) { /* ... */ }

}; }

};

}

const UTF8String = Mixin(ANSIString);

(new UTF8String("Hi")).print(); // Runtime Error!

Therefore, TypeScript’s support for nested classes is also affected by the inexact superclass problem.

Thus, nested classes can have type-soundness issues as well.

Nested classes with shadowing in Java. Finally, let us make a small digression to see how nested

classes are treated in Java. Fig. 4 illustrates a variant of our example in Java. Similarly to the example

in JavaScript, we create a new class UTF8String that inherits from ANSIString and define a different

set of methods in the nested class Iterator. The code type-checks in Java and is still type-safe. The

key to the type safety is that, unlike methods, nested classes are not implicitly overridden in Java.

Instead, the Iterator in UTF8String shadows the one in ANSIString. In other words, new Iterator()

in print is statically bound and is always instantiating ANSIString.Iterator. Nested classes are not

dynamically dispatched in Java, which is inconsistent with the inheritance behavior for methods.

The shadowing approach has the advantage of type safety, but this comes at the cost of flexibility,

since the ability to override and dynamically bind nested classes is useful, as we shall see next.

2.4 Virtual Classes and Family Polymorphism
The ability to override or refine nested classes provides a considerable amount of flexibility, and is

a key idea behind concepts such as virtual classes [Clarke et al. 2007; Ernst et al. 2006; Madsen and

Møller-Pedersen 1989] and family polymorphism [Ernst 2001; Saito et al. 2008; Zhang and Myers
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class ANSIString {

int length;

char[] chars;

ANSIString(String str) {

length = str.length();

chars = str.toCharArray();

}

class Iterator {

int index;

boolean hasNext() { return index < length; }

char next() { return chars[index++]; }

}

void print() {

Iterator it = new Iterator(); // Iterator is statically bound.

while (it.hasNext()) System.out.print(it.next());

}

}

class UTF8String extends ANSIString {

UTF8String(String str) { super(str); } // We trivially call super's constructor.

class Iterator { // This class shadows ANSIString.Iterator.

void forEach(Consumer<? super Character> action) { /* ... */ }

}

}

Fig. 4. Nested classes in Java, with a shadowing semantics.

2017]. Thus, as we shall argue in this subsection, both JavaScript and TypeScript support virtual

classes to a large extent, which can be useful for writing highly modular and reusable code.

Virtual classes. As we have seen before, a method in a superclass can be overridden in a subclass

to refine its behavior. A call to the method is dynamically dispatched according to the runtime type

of the object. Such a late-bound method is called a virtual method. In the same way, the power of

dynamic dispatching can be extended to nested classes. Virtual classes are nested classes that can

be overridden (or rather refined) in subclasses, and the reference to the virtual class is determined

by the runtime type of the object of the outer class. Virtual classes were originally introduced in

the BETA programming language [Madsen et al. 1993], and they are also essentially supported in

JavaScript and TypeScript via first-class classes and the overriding semantics.

Family polymorphism. Virtual classes enable family polymorphism, which naturally solves the

long-standing dilemma of modularity and extensibility – the expression problem [Wadler 1998] – in

a Scandinavian style [Ernst 2004]. In the expression problem, the challenge is to provide various

operations (evaluation, pretty-printing, etc.) over various expressions (numbers, addition, negation,

etc.) in a modular fashion. A satisfactory solution should allow modular, type-safe extension to

both expressions and operations.

We start the example with numeric literals and addition, as well as the evaluation operation

in Fig. 5a. Lit, for numeric literals, and Add, for addition, form the initial class family FamilyEval.
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type Eval = { eval: () ⇒ number };

class FamilyEval {

Lit(n: number) {

return class {

eval() { return n; }

};

}

Add(l: Eval, r: Eval) {

return class {

eval() { return l.eval() +

r.eval(); }

};

}

}

(a) Initial family.

type Print = { print: () ⇒ string };

class FamilyPrint extends FamilyEval {

Lit(n: number) {

return class extends super.Lit(n) {

print() { return n.toString(); }

};

}

Add(l: Eval&Print, r: Eval&Print) {

return class extends super.Add(l, r) {

print() { return l.print() + " + " +

r.print(); }

};

}

}

(b) Adding a new operation.

class FamilyNeg extends FamilyPrint {

Neg(e: Eval&Print) {

return class {

eval() { return -e.eval(); }

print() { return "-(" + e.print() + ")"; }

};

}

}

(c) Adding a new expression.

Fig. 5. Expression Problem in TypeScript.

Since TypeScript is structurally typed, we do not need to declare an abstract class or interface Exp

together with Lit and Add. Instead, we can directly use type Eval to annotate the parameters of Add.

To add a new operation, say pretty-printing, we can create a new class family FamilyPrint that

inherits from FamilyEval. Fig. 5b shows the code for the new family. In the new family, Lit and Add

also inherit from super.Lit and super.Add, and a new method print is added to both of them. The

new operation is represented by type Print, and the parameters of Add are refined to have type

Eval&Print. As mentioned in Section 2.1, TypeScript allows bivariant subtyping for parameters

of class members, so the unusual refinement of Add type-checks here. Note that the overriding of

nested classes is a special case here: Lit and Add are simply extended with new methods, with no

existing methods being overridden. In other words, the nested classes are being merged, instead of

overriding existing functionality.

Similarly, we create a new family FamilyNeg for a new expression, say negation in Fig. 5c. Finally,

we instantiate FamilyNeg and build an expression using all three constructors (Lit, Add, and Neg).

Both operations (eval and print) are available for the expression:

const fam = new FamilyNeg();

const e = new (fam.Add(new (fam.Lit(48)), new (fam.Neg(new (fam.Lit(2))))));
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e.print() + " = " + e.eval() // "48 + -(2) = 46"

In this way, we can solve the expression problem in TypeScript (modulo the type-safety requirement).

Although TypeScript does not fully ensure type safety, its support for a rather minimal encoding of

virtual classes allows a lot of flexibility and reuse, which can be quite useful in practice.

One final remark is that the solution in TypeScript is still not completely satisfactory because

the order of extensions is fixed by the inheritance hierarchy (from FamilyEval to FamilyPrint

to FamilyNeg). In other words, the extension of Neg is coupled to the extension of Print, and we

cannot use the extension of Neg independently. This issue was not mentioned by Wadler in the

original expression problem, but it was later identified by Zenger and Odersky [2005] as independent
extensibility. In TypeScript, a possibility to address the coupling issue is to adopt the mixin pattern,

making class families such as FamilyPrint and FamilyNeg functions parametrized by the family

superclass. For simplicity of presentation, we have just employed static inheritance here. We will

also address this issue in CP’s solution in Section 3.4, which provides a simple and natural approach

to avoid coupling and, additionally, is type-safe.

2.5 Problem Statement and Paper Roadmap
A three-fold challenge: achieving flexibility, efficiency, and type safety. Ideally, programming

languages with dynamic inheritance and first-class classes should have three properties:

(1) Flexibility: The language should be flexible so that highly dynamic patterns of inheritance

are allowed. Thus, it should be possible to support dynamic forms of mixins or traits, as well

as nested classes or even virtual classes and family polymorphism.

(2) Reasonable efficiency and separate compilation: For practical implementations, it is

desirable to have a compilation model that is reasonably efficient and supports good software

engineering properties, such as separate compilation.

(3) Type safety: The language should be type-safe, so that type errors can be prevented statically.
Both JavaScript and TypeScript support points (1) and (2) well. As we have seen, with first-class

classes, we can model dynamic inheritance, mixins, nested classes, and even virtual classes and

family polymorphism. Therefore, the inheritance model provided by JavaScript and TypeScript

is expressive and flexible. Furthermore, there has been a lot of work on optimizing JavaScript

implementations, so JavaScript and TypeScript’s inheritance and class model are reasonably efficient.

Unfortunately, for point (3), TypeScript’s support for type-checking first-class classes has a few

type-soundness holes. Some of these holes, such as the use of bivariant subtyping, are known

and documented. First-class classes bring new issues, such as the inexact superclass problem. The

inexact superclass problem can be avoided by moving into a model based on static inheritance,

which is the option widely adopted by most mainstream languages. However, this trades flexibility

for type safety. Ideally, we want to avoid this trade-off. Retaining flexibility and type safety while

addressing the inexact superclass problem is non-trivial. In particular, it seems to be hard with the

overriding semantics of JavaScript, which simply overrides properties that have the same name.

Thus, to achieve the three goals together, a new compilation scheme seems desirable.

Previous work on compositional programming and CP [Zhang et al. 2021] has addressed points

(1) and (3). However, that work has not studied practical implementability questions, such as how

to have a reasonably efficient compilation model with separate compilation. Although there is an

implementation of the CP language, this implementation is based on an interpreter. Moreover, the

semantics underlying compositional programming languages rely on coercive subtyping [Luo et al.

2013], which raises immediate questions in terms of efficiency, since upcasts lead to computational

overhead. A naive implementation that inserts coercions every time upcasting is needed has a

prohibitive cost, which can be orders of magnitude slower than JavaScript programs.
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Solving the three-fold challenge: efficient compilation for CP. The problem that this paper solves is

how to compile compositional programming much more efficiently while also supporting separate

compilation. Therefore, we obtain property (2), which was missing on previous work on CP. Thus,

we can solve the three-fold challenge. We should emphasize that our work lacks various features

supported by JavaScript and TypeScript, and the semantics we employ for inheritance has some

important differences from JavaScript. Thus, our work does not offer an immediate solution that

TypeScript can adopt as a type-safe replacement for their current class model. Nevertheless, our

compilation model can be useful for new languages that aim to have highly expressive models of

inheritance while ensuring type safety. Moreover, it can inform existing language designers, who

may be able to borrow some ideas to improve their language designs.

Paper roadmap. In Section 3, we will give an overview of CP and see how the CP language

addresses the type-safety issues of dynamic inheritance while retaining flexibility. Section 4 then

describes the key ideas in our new compilation scheme and its implementation in the CP compiler.

Section 5 formalizes a simplified version of the compilation scheme along some of the key ideas.

Section 6 explains implementation details, including the JavaScript code that is generated and some

core optimizations in the CP compiler. Section 7 provides an empirical evaluation, and Section 8

discusses related work. Finally, Section 9 concludes the paper and outlines future work.

3 Dynamic Inheritance in CP
CP [Zhang et al. 2021] is a statically typed language that supports dynamic inheritance via merging

and still guarantees type safety. In this section, we first give an overview of the key features of

CP: merges and disjointness. We then show how potential conflicts in dynamic inheritance are

resolved in CP, and how CP solves the inexact superclass problem. Finally, we demonstrate a form

of dynamic family polymorphism in CP.

3.1 Merges, Disjointness, and the Treatment of Conflicts
The merge operator is used to construct a term that has an intersection type. The idea originates

from the Forsythe programming language by Reynolds [1997], but the general merge operator that

we employ was first introduced by Dunfield [2014]. If e1 has type A and e2 has type B, then the

merged term (e1 , e2) has the intersection type (A&B). When we specialize A and B to be record

types, e1 , e2 is basically concatenating two records. Therefore, the merge operator can be regarded

as a generalized form of record concatenation. Since objects are commonly modeled as records in

the literature, record concatenation, or more generally, the merge operator is closely related to

inheritance [Cook and Palsberg 1989; Wand 1991].

However, adding an unrestricted merge operator to a language would lead to semantic ambiguity.

In other words, the semantics of the language would become non-deterministic. For example,

(1 , 2) + 3 could evaluate to either 4 or 5. That is why Oliveira et al. [2016] introduced the notion

of disjointness to avoid ambiguity. If specialized to record types again, disjointness is similar to

constraints used in row polymorphism [Harper and Pierce 1991]. In the presence of disjointness, the

two terms to be merged are restricted to have disjoint types so that the information they convey

does not overlap. By this means, 1 , 2 is rejected because it is not well-typed, as Int and Int itself

are not disjoint.

Interaction between merging and subtyping. According to the notion of disjointness, { x: Int }

and { x: Int } itself are not disjoint either, so the merge r,s is rejected in the following code:

let merge (r: { x: Int }) (s: { x: Int }) = r,s in -- Type Error!

merge { x = 1 } { x = 3 } --> { x = ? }
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If we further consider subtyping, the merge operator is still problematic, and disjointness alone is

not sufficient to prevent ambiguity. For example, consider the following code:

let merge (r: { x: Int }) (s: { y: Int }) = r,s in

merge { x = 1; y = 2 } { x = 3; y = 4 } --> { x = ?; y = ? }

Note that we change the type of s from { x: Int } to { y: Int }. Although the type of s is now

disjoint with that of r, we can pass terms of their subtypes to merge. In this case, r has an extra

field y and s has an extra x. Now the issue of ambiguity occurs again.

If we look at the function merge statically, we would expect that the field x is from r and y from

s. Therefore, the most reasonable result for the code above is { x = 1; y = 4 }. However, there

is no naive way to implement the merge operator to achieve this result. Neither left-biased nor
right-biased overriding is able to handle this case. Furthermore, selecting other fields at run time

can lead to type unsoundness. For example, consider a variant of the previous merge:

merge { x = 1; y = "Hi" } { x = "Bye"; y = 4 } --> { x = ?; y = ? }

Statically, the function is expected to compute a value of type { x: Int; y: Int }, but fields of

type String could be selected. The interaction between record concatenation and subtyping is

inherently difficult and was the reason preventing Cardelli and Mitchell [1991] from choosing

concatenation as the primitive operator in their calculus. This problem is closely related to the

inexact superclass problem discussed in Section 2.2, which can be seen as a manifestation of the

more general problem identified by Cardelli and Mitchell.

The solution found in the line of work by Oliveira et al. [2016] is to employ a coercive semantics

of subtyping, where a subtyping relationship 𝐴 <: 𝐵 implies a coercion function of type A → B.
This solution picks the field x from s and y from r, by being aware of the static types when selecting

components. In the previous example, during the function application, r is coerced to a single-field

record { x = 1 }, corresponding to the parameter type { x: Int }. A similar coercion is inserted

for s as well, coercing it to { y = 4 }. Then the merge operator simply concatenates { x = 1 } and

{ y = 4 }, which has no ambiguity. Thus, a combination of disjointness and a coercive approach to

subtyping is able to eliminate the ambiguity introduced by an unrestricted merge operator.

Disjoint polymorphism and disjointness constraints. In the previous example, some type informa-

tion about the records being merged is lost. But we may wish to preserve other fields in the records

that do not create ambiguity. This can be achieved by merging polymorphic terms, whose static

types are not fully known. For example, consider a variant of the previous example:

let mergeSub (A <: { x: Int }) (B <: { y: Int }) (r: A) (s: B) = r,s in

mergeSub @{ x: Int; y: Int } @{ x: Int; y: Int } { x = 1; y = 2 } { x = 3; y = 4 }

The code is written in pseudo-CP, where <: denotes the upper bound of a type parameter. In

this example, A and B are declared to be subtypes of { x: Int } and { y: Int } respectively.

Since CP does not yet support implicit polymorphism, both type parameters are instantiated

explicitly on the second line. Like in Haskell, @ is the prefix of type arguments in CP. With bounded

quantification [Cardelli and Wegner 1985], we cannot guarantee the disjointness of A and B, so the

issue of ambiguity comes back again. This issue can be solved by disjoint quantification [Alpuim

et al. 2017] (disjointness is denoted by *):

let mergeDis (A * { y: Int }) (B * A & { x: Int }) -- B * A and B * { x: Int }

(r: A & { x: Int }) (s: B & { y: Int }) = r,s in

mergeDis @{ y: Int } @{ x: Int } { x = 1; y = 2 } { x = 3; y = 4 } -- Type Error!

mergeDis @Top @Top { x = 1 } { y = 4 } --> { x = 1; y = 4 }
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Note that the type of r is now A & { x: Int } instead of A. This is how we usually translate subtype-

bounded quantification to disjoint quantification [Xie et al. 2020]. The type parameter A is declared

to be disjoint with { y: Int } to avoid the overlap, and B is disjoint with { x: Int } similarly.

Another important constraint here is the disjointness of A and B, ensuring that other fields will

never conflict as well. For example, consider a third field of type { z: Int }:

mergeDis @{ z: Int } @{ z: Int } { x = 1; z = 5 } { y = 4; z = 6 } -- Type Error!

mergeDis @Top @{ z: Int } { x = 1 } { y = 4; z = 6 } --> { x = 1; y = 4; z = 6 }

The first line of code fails to type-check because A and B are not disjoint and both contain a field

of type { z: Int }. The second line resolves the conflict, and we can access all three fields after

merging. The absence of certain fields is not expressible in TypeScript. As we shall see in Section 3.3,

this is important for CP to safely handle dynamic inheritance.

3.2 From Merging to Inheritance
Let us now turn to the topic of how we model inheritance as merging. According to the denotational

semantics of inheritance [Cook and Palsberg 1989], an object is essentially a record, and a class (or

a trait in CP) is essentially a function over records. Also note that, since CP is a purely functional

language, there is no distinction between object fields and methods – a method is just a field that

may have a function type. Class A in Fig. 2 can be encoded as:

type Rcd = { m: String; n: String };

-- class A

mkA = \(this: Rcd) → { m = "foobar"; n = toUpperCase this.m };

The function parameter this is a self-reference. With the self-reference, we can refer to other fields

like this.m in the n field. In this model, the instantiation of a class is obtained by taking a fixpoint

of the function. Furthermore, class inheritance can be encoded as record concatenation:

-- class B extends A

mkB = \(this: Rcd) → let super = mkA this in super , { m = 48 };

We first provide the new self-reference to mkA to obtain super. Then we merge super with the body

of class B to obtain the final object. After instantiating class B with a fixpoint, we can access the n

field:

o = fix this: Rcd. mkB this; --> { m = "foobar"; n = "FOOBAR"; m = 48 }

o.n --> "FOOBAR"

Here we get the expected result instead of a runtime error. The key point is that we allow duplicate

labels as long as the fields have disjoint types. Because of the merging semantics of CP, o will have

two m fields: one of type Int and the other of type String. Thus, unlike TypeScript, no implicit (and

type-unsafe) overriding happens in this case. Instead, both { m = "foobar" } and { m = 48 } are

kept in the record o, and toUpperCase this.m will automatically pick the former one. Internally, o.m

has the intersection type String&Int, which means it contains a merge of a string and an integer.

Such behavior is a kind of overloading by return type, which is supported in some languages such

as Swift and Haskell (via type classes) [Marntirosian et al. 2020].

Traits in CP follow the aforementioned model of inheritance. Therefore, the example above can

be rewritten in the form of traits:

mkA = trait [this: Rcd] ⇒ { m = "foobar"; n = toUpperCase this.m };

mkB = trait [this: Rcd] inherits mkA ⇒ { m = 48 };
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The self-type annotation [this: Rcd] corresponds to the function parameter this in the previous

code. If there is no use of this in any field, the self-type annotation can be omitted. The instantiation

of a trait is more conveniently done by the new keyword:

o = new mkB; o.n --> "FOOBAR"

Merging versus overriding. So far we have discussed how disjointness prevents ambiguity in

merging. Basically we avoid any overlap between the two terms to be merged. According to the

model of inheritance that we use, this constraint automatically applies to inheritance as well. One

may ask whether this means that overriding is forbidden in CP. This is not true: programmers can

explicitly declare overriding using the override keyword. For example, we can have:

base = trait ⇒ { m = 48 };

derived = trait inherits base ⇒ { override m = super.m - 2 };

This forces programmers to think about the potential conflict and make a decision. Scala and

other programming languages also require programmers to write override explicitly. Accidentally

overriding a field or a method in the base class can lead to unexpected behavior, which is a common

source of bugs in OOP languages. For example, base may have other fields that assume m is exactly

48 and will not work properly if m is overridden. This issue is also known as the fragile base class
problem [Mikhajlov and Sekerinski 1998]. At run time, CP will exclude the overridden field from

the base trait before merging.

Multiple inheritance. CP supports a form of multiple trait inheritance, which makes the treatment

of conflicts more complicated. For example, consider the following code:

base1 = trait ⇒ { m = 48; n = "Hi" };

base2 = trait ⇒ { m = 46; n = "Bye" };

derived = trait inherits base1 , base2 ⇒ { ... }; -- Type Error!

In some OOP languages that support multiple inheritance, such as Scala and Python, the order of

inheritance determines which field is chosen if fields in different base classes have the same name.

However, the default resolution order may not be what programmers desire. It easily causes bugs if

programmers are not aware of the implicit overriding. What is worse, there is no way to pick n

from base1 and m from base2 at the same time. In CP, programmers are again required to explicitly

resolve the conflicts, while having more flexibility to choose the desired fields:

derived = trait inherits base1\m , base2\n ⇒ { ... }; -- OK!

--> trait ⇒ { n = "Hi" } , { m = 46 } , { ... }

With the record restriction operator (\) powered by type difference [Xu et al. 2023], we can easily

remove m from base1 and n from base2. In traditional OOP languages, inheritance involves two

things: inheriting all fields from the base classes, and overriding some of them. In contrast, symmetric

merging in CP does not imply any overriding. Nevertheless, for the sake of convenience, CP also

provides biased versions of merging (e.g. base1 ,+ base2 or base1 +, base2) if left-to-right or

right-to-left overriding is desired. They are also powered by type difference under the hood.

3.3 Dynamic Inheritance in CP
Now let us go back to the safety issue demonstrated in Fig. 2 and see how it can be solved in

CP. The code for a CP solution is shown in Fig. 6. Here the function mixin has two parameters:

TBase is a type parameter, which is disjoint with { m: Int }; and base is a term parameter, which

is a trait that implements TBase. Like first-class classes in TypeScript, we can dynamically create

a trait that inherits from base in CP. The difference here is that we can declare the absence of
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mixin (TBase * { m: Int }) (base: Trait<TBase>) =

trait [this: TBase] inherits base ⇒ { m = 48 };

mkA = trait [this: { m: String; n: String }] ⇒ {

m = "foobar";

n = toUpperCase this.m;

};

o = new mixin @{ m: String; n: String } mkA;

o.n --> "FOOBAR"

Fig. 6. Solving the inexact superclass problem in CP.

{ m: Int } in the trait base to make sure that there is no conflict. As mentioned in Section 3.2, CP

does a fine-grained disjointness check that considers, not only the label name, but also the field

type. Therefore, { m: String } is disjoint with { m: Int }, and there is no conflict in the dynamic

inheritance. Since both versions of m fields are available in o, the n field can still rely on the original

m field that contains a string. Together with disjointness constraints, type safety is guaranteed in

CP without sacrificing the flexibility of dynamic inheritance.

Finally, if we apply mixin to a different trait that contains an m field of type Int:

mkA' = trait ⇒ { m = 0; n = 0 };

o = new mixin @{ m: Int; n: Int } mkA'; -- Type Error!

Wewill get a type error because { m: Int; n: Int } is not disjoint with { m: Int }. In other words,

the field m in mkA' conflicts with m in mixin.

3.4 Family Polymorphism in CP
Here we revisit the example of family polymorphism in Section 2.4 and show how it can be

implemented in CP. As before, we start with the evaluation of numeric literals and addition. The

CP code is shown in Fig. 7a. The compositional interface AddSig serves as the specification of

expressions, while type Eval represents the evaluation operation. Note that <Exp> is a special type

parameter called a sort in CP. A sort is kept abstract until it is instantiated with a concrete type like

in AddSig<Eval>. The interface AddSig<Eval> is implemented by trait familyEval, where syntactic

sugar called method patterns is used to keep code compact. The desugared code is:

familyEval = trait implements AddSig<Eval> ⇒ {

Lit = \n → trait ⇒ { eval = n };

Add = \l r → trait ⇒ { eval = l.eval + r.eval };

};

Although the syntactic sugar makes it seem that eval is defined by pattern matching of constructors,

(Lit n) and (Add l r) are actually nested traits, which are virtual and can be refined in CP.

The solution to the expression problem in CP is quite straightforward. To extend operations, we

instantiate the sort with another type and implement it with another trait. For example, Fig. 7b

shows how to add support for pretty-printing. In the other dimension, we add negation to numeric

literals and addition. We define a new compositional interface and implement both operations with

a trait in Fig. 7c. This time we instantiate the sort of NegSig with the intersection type Eval&Print.

Finally, we can compose the two-dimensional extensions together by the merge operator easily:
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type AddSig<Exp> = {

Lit: Int → Exp;

Add: Exp → Exp → Exp;

};

type Eval = { eval: Int };

familyEval =

trait implements AddSig<Eval> ⇒ {

(Lit n).eval = n;

(Add l r).eval = l.eval + r.eval;

};

(a) Initial family.

type Print = { print: String };

familyPrint =

trait implements AddSig<Print> ⇒ {

(Lit n).print = toString n;

(Add l r).print = l.print ++ " + "

++ r.print;

};

(b) Adding a new operation.

type NegSig<Exp> = { Neg: Exp → Exp };

familyNeg =

trait implements NegSig<Eval&Print> ⇒ {

(Neg e).eval = -e.eval;

(Neg e).print = "-(" ++ e.print ++ ")";

};

(c) Adding a new expression.

Fig. 7. Expression Problem in CP.

fam = new familyEval,familyPrint,familyNeg : AddSig<Eval&Print> & NegSig<Eval&Print>;

Nested composition and distributive subtyping. The merge of the three traits seems simple from a

syntactic perspective. However, it requires a more sophisticated mechanism under the hood. Let us

look at the desugared code for the merge between familyEval and familyPrint:

trait implements AddSig<Eval> ⇒ { -- familyEval

Lit = \n → trait ⇒ { eval = n };

Add = \l r → trait ⇒ { eval = l.eval + r.eval };

} ,

trait implements AddSig<Print> ⇒ { -- familyPrint

Lit = \n → trait ⇒ { print = toString n };

Add = \l r → trait ⇒ { print = l.print ++ " + " ++ r.print };

}

Our expectation is that the result of merging should contain, for example, a single constructor Lit

that supports both the eval and print operations. Therefore, the result should be equivalent to:

trait implements AddSig<Eval&Print> ⇒ {

Lit = \n → trait ⇒ { eval = n;

print = toString n };

Add = \l r → trait ⇒ { eval = l.eval + r.eval;

print = l.print ++ " + " ++ r.print };

}

To achieve this, CP employs nested composition [Bi et al. 2018] and distributive subtyping [Barendregt
et al. 1983], where traits, records, and functions distribute over intersections. In other words,
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merging applies to the whole trait hierarchy, including nested traits. This example showcases

family polymorphism by the refinement of nested traits (i.e. CP’s version of virtual classes).

With these features available in CP, we can access the three constructors (Lit, Add, and Neg) as

well as the two operations (eval and print), similarly to the previous TypeScript code:

e = new fam.Add (new fam.Lit 48) (new fam.Neg (new fam.Lit 2));

e.print ++ " = " ++ toString e.eval --> "48 + -(2) = 46"

Dynamic family polymorphism. Since merging generalizes dynamic inheritance, we can rewrite

familyNeg, for instance, using a mixin style:

familyNeg (TBase * NegSig<Eval&Print>) (base: Trait<TBase>) =

trait [this: TBase] implements NegSig<Eval&Print> inherits base ⇒ {

(Neg e).eval = -e.eval;

(Neg e).print = "-(" ++ e.print ++ ")";

};

fam = new familyNeg @AddSig<Eval&Print> (familyEval,familyPrint)

: AddSig<Eval&Print> & NegSig<Eval&Print>;

By applying familyNeg to (familyEval,familyPrint), we dynamically create a trait that inherits

from the latter. Of course, we can choose other traits as a base trait at run time, which is supported

by dynamic inheritance in CP.

Note that in Section 2.4, FamilyEval, FamilyPrint, and FamilyNeg have a statically fixed inher-

itance hierarchy. As a result, the negation expression cannot be separated from the other two

expressions because FamilyNeg is a subclass of FamilyPrint. In contrast, the inheritance hierar-

chy can be dynamically determined in CP, so familyEval, familyPrint, and familyNeg can all be

individually used or composed with any other traits. In fact, CP’s solution solves a dynamic vari-

ant of the expression problem, which can be seen as the combination of the expression product

line [Lopez-Herrejon et al. 2005] and dynamic software product lines [Hallsteinsen et al. 2008].

3.5 Discussion
In this and the previous section, we have seen that both CP and JavaScript/TypeScript support

a powerful and expressive form of dynamic inheritance. However, there are some important

differences worth noting:

• CP is type-safe. While the three languages provide a high degree of flexibility, CP is the

only language which combines flexibility and type safety.

• No implicit overriding in CP. Unlike JavaScript/TypeScript, where implicit overriding is

common, CP adopts a trait model, so implicit overriding can never happen.
• Dealing with conflicts using disjoint types. In JavaScript/TypeScript, method overriding

is based on names. So even when the method or field in the superclass has a different (or

disjoint) type, overriding happens when the subclass has a method with the same name. As

we have seen, this is the source of type unsoundness in the inexact superclass problem. In

CP, methods with disjoint types can coexist in the same object. Thus, for the same situation,

CP will not override but inherit the method from the superclass.

These differences are important to obtain flexibility while preserving type safety. However, these

differences also mean that the dynamic semantics of CP needs to be different from that of Java-

Script/TypeScript. In particular, the dynamic semantics of CP has to be aware of types, since types

play a role in determining whether conflicts exist or not, and in unambiguously performing method
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lookup. This creates important challenges in obtaining an efficient implementation, which have

not been addressed in previous work.

4 Key Ideas of the CP Compiler
We now introduce the key ideas under the hood of the CP compiler and describe why and how

to compile CP to extensible records in general. We also discuss the major challenges that we had

to overcome. Although our implementation targets JavaScript, the design can be adapted to any

other language that supports some kind of extensible records. We refer the reader to Section 5 for a

formal description of our compilation scheme and Section 6 for the details of our implementation

targeting JavaScript.

4.1 Dunfield’s Elaboration Semantics
In previous work by Dunfield [2014] and its follow-up work by Oliveira et al. [2016], the semantics

of the merge operator is well studied. According to the non-deterministic operational semantics

given by Dunfield, a merge 48 , true may reduce to 48 or true; both are valid reductions. However,

such reductions may not preserve types. For instance, in a context like (48 , true) − 2, the merge

should reduce to an integer. Alternatively, Dunfield proposes an elaboration semantics into a target

calculus with pairs, which is also used by Oliveira et al. Within this framework, an intersection

type A&B is elaborated into a product type A × B, and a merge e1 , e2 is elaborated into a pair

⟨e1, e2⟩. While an elaboration to pairs offers a simple model for merges, it also imposes significant

runtime overhead. We identify three limitations in previous work.

Indirect coercions. Following the elaboration model to pairs, (48 , true) − 2 should be elaborated

into ⟨48, true⟩.fst−2. That is, we need to select the first element from the elaborated pair to obtain a

well-typed expression. Merges, due to their flexible nature, do not have an explicit elimination form.

Then how can we determine where to insert “.fst”? In a type-directed elaboration, we can generate

coercion functions according to subtyping judgments in the typing derivation. A rule DTyp-Sub

can be found in previous work.

DTyp-Sub

Γ ⊢ e ⇒ A ⇝ 𝜖

A <: B ⇝ 𝑐

Γ ⊢ e ⇐ B ⇝ 𝑐 𝜖

Ela-Sub

Γ ⊢ e ⇒ A ⇝ 𝜖1
𝜖1 : A <: B ⇝ 𝜖2

Γ ⊢ e ⇐ B ⇝ 𝜖2

The rule DTyp-Sub means that if a source term e is inferred to have type A and elaborated into a

target term 𝜖 , and the subtyping judgment A <: B implies the coercion function 𝑐 , then e can be

checked against type B and elaborated into 𝑐 𝜖 . In the aforementioned example, the merge of type

Int&Bool is cast to type Int. Therefore, a coercion function should be implicitly inserted for the

subtyping relation Int&Bool <: Int. Since the latter is the first half of the former, the coercion

𝜆x . x .fst is inserted.
A careful reader may notice that rule DTyp-Sub does not produce ⟨48, true⟩.fst − 2 as we expect.

Instead, it produces ((𝜆x . x .fst) ⟨48, true⟩) − 2, which is less efficient as it introduces a spurious

application. To fill the gap, we propose an alternative rule Ela-Sub in our work and a novel coercive

subtyping judgment, which directly coerces 𝜖1 into 𝜖2. In the aforementioned example, the subtyping

relation Int&Bool <: Intwill coerce ⟨48, true⟩ to produce themore efficient ⟨48, true⟩.fst. Although
we only avoid one step of beta reduction in this case, a more complicated subtyping judgment will

lead to many coercion functions composed together and introduce many spurious applications.

Linearmerge lookup. A second important drawback of Dunfield’s approach is the representation of

merges as nested pairs. The merge operator composes expressions in a binary manner, so extracting
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one component from nested merges of 𝑛 components requires 𝑛 − 1 projections in the worst case.

For example, when adding one more element to the previous merge, 48 , true , ‘a’ for example, one

more projection must be added to the elaborated result as well: ⟨⟨48, true⟩, ‘a’⟩.fst.fst − 2. Note

that we have simplified the coercion application from ((𝜆x . x .fst) ◦ (𝜆x . x .fst)) ⟨⟨48, true⟩, ‘a’⟩ to
⟨⟨48, true⟩, ‘a’⟩.fst.fst. Compared with array access or dictionary lookup, such projections are more

expensive in terms of both code length and runtime performance.

Pairs are order-sensitive. What is worse, a representation based on pairs has another disadvantage:

unnecessary coercions are never optimized. Consider 48 , true and true , 48. These two merges

are equivalent in any context. Although they lead to a different order in the elaborated pairs,

permutation of components does not matter as long as it is consistent with the projection. For

example, ⟨48, true⟩.fst − 2 is the same as ⟨true, 48⟩.snd − 2. However, permutation can lead to

expensive coercions. To cast 48 , true , ‘a’ to type Char& Int&Bool, every single component needs

to be extracted and rearranged:

let 𝑒 = ⟨⟨48, true⟩, ‘a’⟩ in ⟨⟨e.snd, e.fst.fst⟩, e.fst.snd⟩

Thus, it is desirable to replace nested pairs with other representations that support more efficient

merge lookup and avoid conversions between equivalent types.

4.2 Our Representation of Merges
Prologue: compiling overloaded functions. In programming languages that support function over-

loading, C++ for example, the compiler generates different names for overloaded functions. This

process is usually called name mangling. If we have a function f with two overloaded versions:

void f(int x) { ... } // f → __Z1fi

void f(bool x) { ... } // f → __Z1fb

Two different names are generated based on the parameter types: the postfix i in __Z1fi is short

for int and b in __Z1fb for bool. After name mangling, the overloaded versions are disambiguated,

and the linker can easily associate each call site with a specific version.

Key idea: compiling merges to type-indexed records. When it comes to merging, the situation is

similar: a merge contains “overloaded” terms of different types. For example, the merge 48 , true
contains both an integer and a boolean value. When compiling the merge, we adopt a similar

technique to namemangling.We generate a unique name for every type, which is used to look up the

corresponding component. More specifically, a merge is compiled to a record, and the components

of the merge become its fields. For example, 48 , true will compile to {int �⇒ 48; bool �⇒ true}.
The labels in the record, which we call type indices, are generated from the type of each term. As

for nested merges, we also flatten them in one record. Instead of the nested pairs ⟨⟨48, true⟩, ‘a’⟩,
48 , true , ‘a’ is translated into a record of three fields: {int �⇒ 48; bool �⇒ true; char �⇒ ‘a’}. The
disjointness constraint on merging ensures that the components of a merge have non-overlapping

types, hence the fields of the elaborated record are conflict-free (e.g. a merge cannot contain both

48 and 46). The idea of using labels based on types is similar to type-indexed rows [Shields and
Meijer 2001], though their type system does not involve subtyping at all.

The record design significantly reduces the cost of projections. For 48 , true , ‘a’, we would

not need to project twice to find the exact position when selecting the integer. With a single

projection, a component in an 𝑛-level merge can be extracted. Besides, record fields are order-

irrelevant, which allows us to treat permuted intersection types equivalently. Using our approach,

coercing a term from type Int&Bool&Char to type Char& Int&Bool has no cost, because the
elaborated record does not change. In other words, {int �⇒ 48; bool �⇒ true; char �⇒ ‘a’}
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and {char �⇒ ‘a’; int �⇒ 48; bool �⇒ true} are equivalent. In CP, multi-field record types are

also represented as intersection types. For example, {ℓ1 : Int; ℓ2 : Int} is syntactic sugar for

{ℓ1 : Int}& {ℓ2 : Int}. Therefore, the order of fields in a record type does not matter either. We will

develop a comprehensive theory that accounts for type equivalence and handles all possible cases

next.

4.3 Reducing Coercions for Equivalent Types
Coercive subtyping is inevitable in CP, so the performance penalties caused by coercions cannot be

neglected. Following the line of discussion above, an important optimization that we identify is

to avoid coercions for subtyping between equivalent types, whose impact will be benchmarked

in Section 7.1. In our translation scheme, some syntactically different types are translated to the

same type index. These types that are treated equivalently after compilation are called equivalent
types (denoted by A ≒ B). The design of equivalent types is inherently determined by the fact

that we represent merges as records. We do not need to distinguish two types after compilation if

their terms are compiled to records of exactly the same shape. The most interesting types in our

compilation scheme are:

• Top-like types [Oliveira et al. 2016], which correspond to empty records because they do not

convey any information.

• Intersection types, which correspond to multi-field records. Generally speaking, records are

order-irrelevant and contain no duplicate labels (or duplicate labels are allowed but fields

with the same label have equivalent values).

Considering the characteristics of our record-based representation, we can first derive that all

top-like types are equivalent. In addition, two intersection types are considered equivalent if and

only if they are formed using any combination of the following three criteria:

• They are permutations of the same set of types, or

• They are equivalent after deduplicating type components, or

• They are equivalent after removing top-like components.

The rules for other types are structural, ensuring that the type equivalence is a congruence.

Although we work hard to reduce the number of coercions, coercions cannot be fully eliminated.

Next, we will explain the reason why they are still necessary to CP.

4.4 Necessity of Coercions
In CP, our interpretation of subtyping is coercive [Luo et al. 2013], in contrast to the inclusive (also

called subsumptive) view of subtyping. That is, a value of a subtype is not a value of a supertype

directly, but it contains sufficient information so that it can be converted into a value of a supertype.

Such conversions are generated by subtyping derivations and are inserted by the subsumption rule

during type checking.

The need for coercive subtyping in CPmainly comes from the unambiguity constraint onmerging,

for which the redundant information in expressions could be harmful. For example,

let x = 48 , true in not (x : Int , false)
can evaluate to both true and false if the boolean component in x is kept. During typing, we use

disjointness checks to ensure the static types of the components to be merged (Int and Bool in this

example) do not overlap. But the soundness of such checks is based on the assumption that any

expression’s dynamic type corresponds to its static type. That is, x : Int should contain nothing

other than an integer at run time. So we have to coerce x from {int �⇒ 48; bool �⇒ true} to a

record that only contains the integer field. With some simplification, the whole expression should
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compile to:

let x = {int �⇒ 48; bool �⇒ true} in not ({int �⇒ x .int} ++ {bool �⇒ false}).bool
where ++ denotes runtime record concatenation, which is a key feature of extensible records. In

summary, there is a strong correspondence between the value and its static type in CP. So we can

directly tell from the declared type how many fields the compiled record has and what the labels

are. This design resolves the issue of interaction between merging and subtyping in Section 3.1 and

is key to the type safety of dynamic trait inheritance.

Distributive subtyping. Normally, coercions are just removing redundant fields from a compiled

record. For example, we coerce x from {int �⇒ 48; bool �⇒ true} to {int �⇒ 48} in the previous

example. This is because a supertype of an intersection type consists of part of the component

types, so the compiled record of the supertype contains a subset of the original fields. However, the

situation becomes complicated in the presence of distributive subtyping. For example, a function

of type (⊤ → Int) & (⊤ → Bool) can be coerced to type ⊤ → Int&Bool because the former

is a subtype of the latter via distributivity. The coercion is not removing fields but merging two

functions into a single one.

Let us consider a more practical example based on the expression problem in Section 3.4. Here is

a simplified version of what happens to the constructors for numeric literals when we compose the

evaluation and pretty-printing operations:

ep = { Lit = \n → { eval = n } } , { Lit = \n → { print = toString n } };

-- : { Lit: Int → Eval } & { Lit: Int → Print }

As the intersection type indicates, ep should compile to a two-field record: one field stores the

constructor for Eval and the other for Print. According to the subtyping relation, via distributivity,

it can be used as if it has type { Lit: Int → Eval&Print }:

ep.Lit 48 --> { eval = 48; print = "48" }

However, such usage expects that the compiled record from ep only has one field, whose label

corresponds to { Lit: Int → Eval&Print }. Unfortunately, as we showed before, the compiled

record actually contains two different labels from the expected one, so the subtyping does not

automatically work. That is why we need to insert a coercion here to convert the two-field record to

a new one with one single field, which is similar to the previous example of merging two functions.

Our compilation scheme is designed to avoid coercions as much as possible. The aforementioned

coercion is not inserted for direct usage of record projections or function applications. Instead, the

compiled code will select the two functions from the two fields for ep.Lit and apply both to 48.

The results are then combined into a record so that both eval and print fields are present.

4.5 Implementation in JavaScript
The extensible records that we have been mentioning are an abstract data type that supports

construction, concatenation, and projection. They do not imply any concrete data structure in any

particular programming language. They can be implemented as hash tables, binary search trees, or

even association lists, and most mainstream languages have built-in and highly optimized support

for these data structures. In our implementation, extensible records are implemented as JavaScript
objects, whose underlying data structure still varies among JavaScript engines. Nevertheless, one

thing we are certain of is that accessing properties of an object, which corresponds to record

projection in our terminology, is highly optimized in the various engines.

The CP compiler supports modular type checking and separate compilation. In other words,

compiling a CP file does not require access to the source code of the libraries that it depends on.What
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is needed is only the header files of the libraries, which mainly contain type information. Separate

compilation largely decreases the rebuilding time since it avoids recompiling its dependencies, and

it allows closed-source distribution of libraries. More details about the implementation of separate

compilation can be found in Section 6.6.

Type indices. In our implementation, type indices are represented by JavaScript strings (here-

inafter, "string" is in violet and monospaced). Below is how we represent different types:

• Primitive types are simply represented by their names, e.g. "int" for Int.
• Function types are represented by their return types, e.g. "func_int" for String → Int.
• Record types are represented by both labels and field types, e.g. "rcd_l:int" for {ℓ : Int}.
• Intersection types are represented by joining the representations of their components after

alphabetical sorting, deduplication, and removal of top-like types, e.g. "(bool&int)" for

Int&Bool&⊤&Bool. Note that such type indices only occur when intersection types are

nested within functions or records. A top-level intersection corresponds to a multi-field

record, which has separate type indices for each component.

The representation for function types may be a bit surprising. It originates from the disjointness

rule for function types: two function types are disjoint if and only if their return types are disjoint

(rule D-ArrowArrow). This rule is derived from the specification of disjointness (Theorem 5.7),

which basically means that two disjoint types do not overlap on any meaningful types. For example,

Int → Int and Bool → Int shares a common supertype Int&Bool → Int, so these two types are

not disjoint. If those types are considered to be disjoint, we could have the following application:

((\(x: Int) → x + 1),(\(x: Bool) → if x then 1 else 0)) (1,false)

Note that both functions can be selected, and we get either 2 or 0 depending on which function

we pick. The semantics would be ambiguous in this way. Thus, allowing such merges is unsafe.

That is why Int → Int and Bool → Int are not disjoint, and "func_int" cannot occur twice. The

disjointness checks in CP rule out the possibility of type index conflicts between two functions

in a merge. Our design that includes only return types also avoids very long property names in

JavaScript, which may lead to performance issues.

Compiling parametric polymorphism. As we have discussed previously, dynamic inheritance and

family polymorphism are already difficult to handle. In those examples, parametric polymorphism

also plays an important role, yet we have not mentioned the difficulty of compiling it. The reason

why this feature is challenging to compile is a bit more technical: it relates to when to build type

indices, namely the labels of the compiled records.

For non-polymorphic types, the labels remain fixed throughout the program execution. However,

for polymorphic types, we have to deal with type instantiation. For example, we may have a

source type { f : A → A }, where the type A is a type variable. After the instantiation of A, we

may have the type { f : Int → Int } or perhaps the type { f : Bool → Bool }. The problem

is that different instantiations of polymorphic type variables will produce different labels. So for

polymorphic types, the labels cannot be statically computed. To solve this problem, first-class

labels [Leijen 2004] are needed so that polymorphic instantiation can build a label at run time and

propagate the label that corresponds to the instantiated type. A more detailed explanation with

examples can be found in Section 6.2.

Important optimizations. In our implementation, we have applied several optimizations to improve

the performance of the generated JavaScript code. Besides the elimination of redundant coercions

based on equivalent types in Section 4.3, some important optimizations are:

(1) Reducing intermediate objects using destination-passing style [Shaikhha et al. 2017];
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(2) Reducing object copying by detecting whether the compiled term is part of a merge;

(3) Limiting lazy evaluation to certain trait fields to improve performance;

(4) Preventing primitive values from boxing/unboxing;

(5) Avoiding the insertion of coercions for record projections.

These optimizations will be elaborated with examples in Section 6, and their impact on performance

will be evaluated in Section 7.1. Among the five optimizations, the last one (5) is formalized.

5 Formalization of the Compilation Scheme
To demonstrate and validate the key ideas of the compilation scheme, this section introduces two

calculi for the source and the target languages, respectively, and the elaboration between them.

The source calculus is a variant of 𝜆+𝑖 [Bi et al. 2018; Huang et al. 2021], which mainly omits

parametric polymorphism from 𝐹+𝑖 [Bi et al. 2019; Fan et al. 2022], the core calculus for CP. Poly-

morphism is supported in our compiler, and its compilation is informally explained in Section 6.2.

We omit polymorphism here because it adds considerable complications that would distract us

from the key ideas of the compilation scheme. Furthermore, our formalization does not include

most optimizations.

The target calculus 𝜆𝑟 is a standard 𝜆-calculus that supports extensible records, which can be

regarded as a functional subset of JavaScript.

In summary, the formalization includes the key idea of compiling merges to type-indexed records,

and the following improvements:

• The use of a new coercive style that avoids modeling coercions as function terms.

• Avoiding coercions for record projections, which were needed by Fan et al. [2022].

Technical results include proofs of type safety, as well as several interesting properties about our

translation of types into record labels. All proofs are mechanically checked using the Coq proof

assistant and are available in the supplementary materials.

5.1 Target Calculus with Extensible Records
As we have emphasized, our source language CP only allows disjoint traits in trait composition.

Correspondingly, our source calculus 𝜆+𝑖 enforces the disjointness constraint on merges and does

not accept records with overlapping fields. In contrast, the main characteristic of our target calculus
𝜆𝑟 is that it allows duplicate labels in records. When labels conflict, overriding happens, like the

design of scoped labels by Leijen [2005]. But this overriding does not affect type safety (with the

existence of subtyping) or the coherence of the elaboration semantics. This is because we only need

to consider the terms that are generated by the elaboration from our source calculus 𝜆+𝑖 . Since labels
are computed from the corresponding source types of the fields, the type system of 𝜆𝑟 can require

that duplicate labels in one record must be associated with fields of equivalent types. Besides, these
fields are semantically equivalent because they originate from the same terms.

For instance, 1 , 2 and even 1 , 1 are forbidden in 𝜆+𝑖 (and our source language CP). Consequently,

the elaborated terms in 𝜆𝑟 cannot have conflicting fields like {int �⇒ 1; int �⇒ 2}. However, it is
possible, as part of evaluation, that harmless forms of duplicate fields arise, leading to duplicate

fields where the values are the same, such as {int �⇒ 1; int �⇒ 1}. We will discuss this harmless

duplication and the coherence of the elaboration semantics in Section 5.3 and Section 5.4 after

presenting both calculi and the elaboration rules.

Syntax. We use the integer type as a representative of base types. Z denotes the integer type, and

n represents any integer literal. The meta-variable 𝜌 stands for record types, including the empty

record type { }. The type 𝜌 extended by a field of type A with label ℓ is written as {ℓ �⇒ A | 𝜌}.
For example, {ℓ1 �⇒ A | {ℓ2 �⇒ B | { }}} is a record type with two fields and is abbreviated as
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𝜖 → 𝜖′ (Small-step semantics)
TStep-Proj

𝜖 → 𝜖′

𝜖.ℓ → 𝜖′ .ℓ

TStep-AppL

𝜖1 → 𝜖′
1

𝜖1 𝜖2 → 𝜖′
1
𝜖2

TStep-AppR

𝜖 → 𝜖′

𝜈 𝜖 → 𝜈 𝜖′

TStep-ConcatL

𝜖1 → 𝜖′
1

𝜖1 ++ 𝜖2 → 𝜖′
1
++ 𝜖2

TStep-ConcatR

𝜖 → 𝜖′

𝜈 ++ 𝜖 → 𝜈 ++ 𝜖′

TStep-ProjRcd

lookup ℓ 𝜈1 ⇒ 𝜈2

𝜈1 .ℓ → 𝜈2

TStep-Rcd

𝜖 → 𝜖′

{ ℓi �⇒ 𝜈i
i
; ℓ �⇒ 𝜖 ; ℓj �⇒ 𝜖j

j } → { ℓi �⇒ 𝜈i
i
; ℓ �⇒ 𝜖′; ℓj �⇒ 𝜖j

j }

TStep-Concat

{ ℓi �⇒ 𝜈i
i } ++ { ℓj �⇒ 𝜈j

j } → { ℓi �⇒ 𝜈i
i
; ℓ �⇒ 𝜈j

j }

TStep-AppAbs

(𝜆x . 𝜖) 𝜈 → 𝜖 [x ↦→ 𝜈]

lookup ℓ 𝜈1 ⇒ 𝜈2 (Label lookup on records)

lookup ℓ {ℓ1 �⇒ 𝜈1; ... ; ℓn �⇒ 𝜈n} ⇒ 𝜈k if ℓk = ℓ and ∀j ∈ 1..𝑘−1, ℓj ≠ ℓ

lookup ℓ 𝜌 ⇒ B (Label lookup on record types)

lookup ℓ {ℓ �⇒ A | 𝜌} ⇒ A
lookup ℓ1 {ℓ2 �⇒ A | 𝜌} ⇒ B if ℓ1 ≠ ℓ2 and lookup ℓ1 𝜌 ⇒ B
lookup ℓ1 {ℓ2 �⇒ A | 𝜌} ⇏ if ℓ1 ≠ ℓ2 and lookup ℓ1 𝜌 ⇏

lookup ℓ { } ⇏

Fig. 8. Dynamic semantics and meta-functions for 𝜆𝑟 .

{ℓ1 �⇒ A; ℓ2 �⇒ B}. In general, abbreviations {ℓ1 �⇒ A1; ... ; ℓn �⇒ An} represents a multi-field

record type, and {ℓ1 �⇒ A1; ... ; ℓn �⇒ An | 𝜌} is the record type 𝜌 being extended by 𝑛 fields. At

the term level, records can be concatenated using ++ , and 𝜖.ℓ extracts the first ℓ field from 𝜖 . The

full syntax of 𝜆𝑟 is as follows:
5

Types A,B, C F Z | A → B | 𝜌
Record types 𝜌 F { } | {ℓ �⇒ A | 𝜌}
Expressions 𝜖 F n | x | 𝜆x . 𝜖 | 𝜖1 𝜖2 | {ℓ1 �⇒ 𝜖1; ... ; ℓn �⇒ 𝜖n} | 𝜖.ℓ | 𝜖1 ++ 𝜖2

Values 𝜈 F n | 𝜆x . 𝜖 | {ℓ1 �⇒ 𝜈1; ... ; ℓn �⇒ 𝜈n}
Typing contexts Δ F · | Δ, x : A

Small-step semantics. The dynamic semantics of target expressions is defined at the top of Fig. 8.

For conciseness, we also use a list comprehension representation { ℓi �⇒ 𝜖i
i } for multi-field records.

The evaluation is call-by-value, and record fields are eagerly evaluated. To concatenate two records,

they have to be fully reduced to values and then merged in rule TStep-Concat. For example,

{ℓ �⇒ 1 + 1} ++ 𝜖 evaluates to {ℓ �⇒ 2; ℓ1 �⇒ 𝜈1; ... ; ℓn �⇒ 𝜈n}, assuming that 𝜖 evaluates to

{ℓ1 �⇒ 𝜈1; ... ; ℓn �⇒ 𝜈n}. Rule TStep-ProjRcd uses the lookup function (lookup ℓ 𝜈1 ⇒ 𝜈2) defined

in the middle of Fig. 8 to extract the first field with a matched label.

Type-level lookup. Besides the value-level lookup function, we define a meta-function on record

types at the bottom of Fig. 8 to reflect the behavior of field selection. It finds the first field type that

5
In our Coq formalization, the bottom type and fixpoint expressions are also formalized in both source and target calculi.

We omit them in the paper to better align with 𝜆+𝑖 [Bi et al. 2018], which does not support these features.

ACM Trans. Program. Lang. Syst.



28 Yaozhu Sun, Xuejing Huang, and Bruno C. d. S. Oliveira

Type equivalence A ≈ B ≜ A ⊆ B ∧ B ⊆ A

A ⊆ B (Width subtyping)

RTS-Refl

A ⊆ A

RTS-Arrow

A ≈ A′ B ≈ B′

A → B ⊆ A′ → B′

RTS-Rcd

∀ℓ C, if lookup ℓ 𝜌2 ⇒ C then lookup ℓ 𝜌1 ≈ C
𝜌1 ⊆ 𝜌2

lookup ℓ 𝜌 ≈ A , lookup ℓ 𝜌 ∼ A (Abbreviations for lookup)

lookup ℓ 𝜌 ≈ A ≜ ∃A′, lookup ℓ 𝜌 ⇒ A′ ∧ A′ ≈ A
lookup ℓ 𝜌 ∼ A ≜ lookup ℓ 𝜌 ≈ A ∨ lookup ℓ 𝜌 ⇏

⊢ Δ (Context well-formedness)

WFC-Nil

⊢ ·

WFC-Cons

⊢ A ⊢ Δ

⊢ Δ, x : A

⊢ A (Type well-formedness)

WF-Nil

⊢ { }

WF-Int

⊢ Z

WF-Arrow

⊢ A ⊢ B
⊢ A → B

WF-Rcd

⊢ A ⊢ 𝜌 lookup ℓ 𝜌 ∼ A
⊢ {ℓ �⇒ A | 𝜌}

Fig. 9. Width subtyping, type equivalence, and well-formedness in 𝜆𝑟 .

matches the given label, just like the value-level one. We use lookup ℓ 𝜌 ⇏ to represent the case

where no field in 𝜌 matches ℓ .

Width subtyping. We define a form of width subtyping for record types at the top of Fig. 9, while

depth subtyping is not supported in 𝜆𝑟 . Intuitively, 𝜌1 ⊆ 𝜌2 holds if, for any projection that can

be performed on a term of 𝜌2, it can also be performed on any term of 𝜌1, and their results have

equivalent types. The subtyping relation will be used after we introduce our source calculus and

its elaboration semantics in the next subsection. In the metatheory proofs, we will need to relate

record expressions to parts of their types, like {ℓ = 1; ℓ ′ = true} to {ℓ �⇒ Z}. The relation between

types and their parts is characterized by width subtyping.

Equivalence of target types. An equivalence relation ≈ is derived from width subtyping to allow

permutation of record fields. lookup ℓ 𝜌 ≈ A is an abbreviation for the case where looking up ℓ in

𝜌 produces a type equivalent to A. A similar abbreviation lookup ℓ 𝜌 ∼ A additionally includes

the case where ℓ is absent in 𝜌 . An important property of equivalent types is that they preserve the

results of lookup:

Lemma 5.1 (Lookup on eqivalent types). Given 𝜌1 ≈ 𝜌2:
• If lookup ℓ 𝜌1 ⇒ C then lookup ℓ 𝜌2 ≈ C.
• If lookup ℓ 𝜌1 ⇏ then lookup ℓ 𝜌2 ⇏.

Type well-formedness. Well-formed types are defined at the bottom of Fig. 9. Record type extension

must be consistent: duplicate labels must be associated with equivalent field types. Specifically,
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𝜌1 ⊎ 𝜌2 ⇒ 𝜌3 (Record type concatenation)

CT-Nil

{ } ⊎ 𝜌 ⇒ 𝜌

CT-Rcd

lookup ℓ 𝜌2 ∼ A 𝜌1 ⊎ 𝜌2 ⇒ 𝜌3

{ℓ �⇒ A | 𝜌1} ⊎ 𝜌2 ⇒ {ℓ �⇒ A | 𝜌3}

Δ ⊢ 𝜖 : A (Typing)
Typ-Int

⊢ Δ

Δ ⊢ n : Z

Typ-Abs

Δ, x : A ⊢ 𝜖 : B
Δ ⊢ 𝜆x . 𝜖 : A → B

Typ-App

Δ ⊢ 𝜖1 : A → B Δ ⊢ 𝜖2 : A′ A ≈ A′

Δ ⊢ 𝜖1 𝜖2 : B

Typ-RcdNil

⊢ Δ

Δ ⊢ { } : { }

Typ-RcdCons

Δ ⊢ 𝜖 : A Δ ⊢ {ℓ1 �⇒ 𝜖1; ... ; ℓn �⇒ 𝜖n} : 𝜌 lookup ℓ 𝜌 ∼ A
Δ ⊢ {ℓ �⇒ 𝜖 ; ℓ1 �⇒ 𝜖1; ... ; ℓn �⇒ 𝜖n} : {ℓ �⇒ A | 𝜌}

Typ-Var

⊢ Δ x : A ∈ Δ

Δ ⊢ x : A

Typ-RcdProj

Δ ⊢ 𝜖 : 𝜌 lookup ℓ 𝜌 ⇒ B
Δ ⊢ 𝜖.ℓ : B

Typ-RcdMerge

𝜌1 ⊎ 𝜌2 ⇒ 𝜌3
Δ ⊢ 𝜖1 : 𝜌1 Δ ⊢ 𝜖2 : 𝜌2

Δ ⊢ 𝜖1 ++ 𝜖2 : 𝜌3

Fig. 10. Typing of 𝜆𝑟 .

as shown by rule WF-Rcd, to safely extend type 𝜌 by a new field of label ℓ , either the old field

type in 𝜌 is equivalent to the new field type, or 𝜌 lacks label ℓ . This is also enforced in the typing

rule Typ-RcdCons.

As we will explain later, every type in the source language, including an intersection type,

is translated into a record type in the target language. All the record labels are generated from

source types in the translation process, where disjoint source types are converted to distinct labels.

Although overlapping is forbidden in merges, overlapping is not forbidden in intersection types. For

example, 1 , 2 is forbidden but Z&Z is a valid type in 𝜆+𝑖 . Therefore, it is natural for corresponding
record types to contain duplicate labels. The properties of the source calculus also ensure that the

translated types are well-formed. With the well-formedness restriction, permuting any fields in a

record type does not affect type safety.

Typing. The typing rules of target expressions are presented in Fig. 10. A set of auxiliary rules is

defined to concatenate two record types (𝜌1 ⊎ 𝜌2 ⇒ 𝜌3). The premise of rule CT-Rcd guarantees the

well-formedness of the result type. Given the types of two record expressions, the concatenation of

the two record types directly reveals the shape of the result of concatenating the two expressions.

In our type system, there is no subsumption rule or a rule that allows conversion between

≈-equivalent types. Every expression under the given typing context has a unique type. That is,

from a record type, it is straightforward to tell the shape of its value: how many fields it has, what

the labels are, and how the fields are arranged. On the other hand, in rule Typ-App, the requirement

on argument type is relaxed to ≈-equivalence.

Type soundness. The 𝜆𝑟 calculus is proven to be type-sound via progress and type preservation.

However, we should emphasize that type preservation (and the substitution lemma) is proven with

respect to ≈-equivalence.

Theorem 5.2 (Progress). If · ⊢ 𝜖 : A, then either 𝜖 is a value or ∃𝜖′, 𝜖 → 𝜖′.
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⌉A⌈ (Top-like types)

TL-Top

⌉⊤⌈

TL-And

⌉A⌈ ⌉B⌈
⌉A&B⌈

TL-Arrow

⌉B⌈
⌉A → B⌈

TL-Rcd

⌉B⌈
⌉{ℓ : B}⌈

A ∗ B (Type disjointness)
D-Symm

B ∗ A
A ∗ B

D-TopL

⌉A⌈
A ∗ B

D-AndL

A1 ∗ B A2 ∗ B
A1 &A2 ∗ B

D-IntArrow

Z ∗ A1 → A2

D-IntRcd

Z ∗ {ℓ : A}

D-ArrowArrow

A2 ∗ B2
A1 → A2 ∗ B1 → B2

D-RcdEq

A ∗ B
{ℓ : A} ∗ {ℓ : B}

D-RcdNeq

ℓ1 ≠ ℓ2

{ℓ1 : A} ∗ {ℓ2 : B}

D-ArrowRcd

A1 → A2 ∗ {ℓ : A}

Fig. 11. Top-like types and type disjointness in 𝜆+𝑖 .

Lemma 5.3 (Substitution preserves typing). If Δ, x : A,Δ′ ⊢ 𝜖 : B and Δ ⊢ 𝜖′ : A′ and
A′ ≈ A, then ∃ B′ such that Δ,Δ′ ⊢ 𝜖 [x ↦→ 𝜖′] : B′ and B′ ≈ B.

Theorem 5.4 (Type preservation). If · ⊢ 𝜖 : A and 𝜖 → 𝜖′, then ∃A′, · ⊢ 𝜖′ : A′ and A′ ≈ A.

5.2 Source Calculus and Elaboration
The source calculus is a variant of 𝜆+𝑖 [Bi et al. 2018; Huang et al. 2021]. It includes type ⊤, the
maximal element in subtyping, as well as its canonical value ⊤. Functions (𝜆x . e : A → B) always
have type annotations. {ℓ = e} stands for single-field records, which has type {ℓ : A} if e has type
A. The full syntax of 𝜆+𝑖 is as follows:

Types A, B,C F ⊤ | Z | A → B | {ℓ : A} | A&B

Expressions e F ⊤ | n | x | 𝜆x . e : A → B | e1 e2 | {ℓ = e} | e.ℓ | e1 , e2 | e : A

Merge operator and disjoint intersection types. The symmetric merge operator (,) is like record
concatenation, with which we can construct multi-field records from single-field records. However,

it is not restricted to records: as long as two expressions have disjoint types (i.e. they are thought to

be compatible), e1 , e2 is allowed, containing the information of both expressions. Assuming that e1
and e2 have type A and B respectively, the whole merge has intersection type A&B.

{ℓ1 : A1; ... ; ℓn : An} ≜ {ℓ1 : A1}& ...& {ℓn : An}
{ℓ1 = e1; ... ; ℓn = en} ≜ {ℓ1 = e1} , ... , {ℓn = en}

Top-like types and disjointness. Fig. 11 defines two relations. They follow the specifications in

previous work on disjoint intersection types [Huang et al. 2021], which are defined in terms of

coercive subtyping (𝜖1 : A <: B ⇝ 𝜖2) in Fig. 15. Since we only need to consider the relation on

types, here we use A <: B to represent the subtyping relation, ignoring the terms 𝜖1 and 𝜖2.

Theorem 5.5 (Coercion-erased subtyping). A <: B if and only if ∀𝜖1, ∃𝜖2, 𝜖1 : A <: B ⇝ 𝜖2.

At the top of Fig. 11 is the algorithmic definition of top-like types (⌉A⌈). It characterizes types
that are equivalent to ⊤, including any function type with a top-like return type, and any record

type with a top-like field type. These types are thought to be vacuous and treated in a unified way.

Theorem 5.6 (Top-like types respect the specification). ⌉A⌈ if and only if ⊤ <: A.
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Type indices T F Z | Ts → Ts | {ℓ : Ts}
List of type indices Ts F [T1, ... , Tn]

|A| = Ts (Translation to type indices)

|A| = [ ] if ⌉A⌈

|Z| = [Z]

|A → B| = [|A| → |B|] if not ⌉B⌈

|{ℓ : A}| = [{ℓ : |A|}] if not ⌉A⌈
|A&B| = dedup (merge |A| |B|)

∥A∥ = 𝜌 (Translation to target types)

∥A∥ = { } if ⌉A⌈

∥Z∥ = {Z �⇒ Z}

∥A → B∥ = {|A| → |B| �⇒ ∥A∥ → ∥B∥} if not ⌉B⌈

∥{ℓ : A}∥ = {{ℓ : |A|} �⇒ ∥A∥} if not ⌉A⌈
∥A&B∥ = 𝜌 if ∥A∥ ⊎ ∥B∥ ⇒ 𝜌

Fig. 12. Translation functions for types in 𝜆+𝑖 .

At the bottom of Fig. 11 is the algorithmic definition of disjointness. We say two types are disjoint

(A ∗ B) if they do not overlap on any meaningful types; or, any common supertypes they share are

top-like. Irrelevant types are considered disjoint, such as integer and function types, or records

with different labels. Function types are disjoint if and only if their return types are disjoint. Two

record types with the same label are disjoint if and only if their field types are disjoint.

Theorem 5.7 (Type disjointness respects the specification). A∗B if and only if ∀𝐶 , if A <: C
and B <: C then ⌉C ⌈.

Type indices and translation functions. Merges in 𝜆+𝑖 are elaborated into records in 𝜆𝑟 . Each

component is tagged by a label, which we call a type index. Type indices are computed from the

component types of an intersection. Defined in Fig. 12, the translation function | · | maps a type to

a list of type indices Ts. For types that are neither a top-like nor an intersection type, the result

is a singleton list. Values of top-like types are thought to contain no information, so these types

are omitted in translation, i.e. they are converted into an empty list [ ]. These lists are merged

in the case of intersection types: merge is a merge sort, taking two sorted lists and producing

a merged sorted list. Then we remove duplicates from the result list using dedup. For example,

Z& (Z → Z) &Z& (⊤ → ⊤) is translated to [Z,Z → Z]. The list only contains the type indices

for the first two elements of the intersection type because the third element is a duplicate of the

first one and the last element is a top-like type. We use an injective function to map each type

index to a unique string in Coq, and we use the alphabetical order of their corresponding strings to

sort type indices.

Lemma 5.8 (Translation). The mapping from type indices to strings has the following properties:
• If |A1 → B1 | = |A2 → B2 | then |A1 | = |A2 | and |B1 | = |B2 |, given that A1 → B1 and A2 → B2
are not top-like.

• If |{ℓ1 : A1}| = |{ℓ2 : A2}| then ℓ1 = ℓ2 and |A1 | = |A2 |, given that {ℓ1 : A1} and {ℓ2 : A2} are
not top-like.

To the right of the type-index translation function, there is another function ∥ · ∥ that maps

source types to target types. It uses the record type concatenation defined in Fig. 10. The function

is based on the design of elaboration, which we will introduce later (presented in Fig. 14). It reflects

the type of the elaborated target term. The result of translation is always a record type: all top-like

types are converted to the empty record type; converting an intersection type is concatenating
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Type equivalence A ≒ B ≜ A ⊑ B ∧ B ⊑ A

A ⊑ B (Width subtyping)

RS-Int

Z ⊑ Z

RS-Top

⌉B⌈
A ⊑ B

RS-Arrow

A1 ≒ B1 A2 ≒ B2
A1 → A2 ⊑ B1 → B2

RS-Rcd

A ≒ B

{ℓ : A} ⊑ {ℓ : B}

RS-AndL1

A1 ⊑ A3

A1 &A2 ⊑ A3

RS-AndL2

A2 ⊑ A3

A1 &A2 ⊑ A3

RS-AndR

A1 ⊑ A2 A1 ⊑ A3

A1 ⊑ A2 &A3

Fig. 13. Width subtyping in 𝜆+𝑖 .

their counterparts. For the remaining types, the translation is a record type tagged by the type

index associated with the type itself. Only when two field types are ≈-equivalent, they can have

the same type index. While our typing rules use the type-index translation function | · |, the type
translation function ∥ · ∥ only serves the purpose of proving metatheory properties.

Equivalence of source types. Corresponding to the ≈-equivalence on target types, ≒ defines an

equivalence relation on source types. Likewise, it is derived from a preorder (A ⊑ B), which is the

width subtyping in the source calculus. Note that it is not the subtyping used in the type system, but

rather an auxiliary relation defined to better characterize the invariant of the type index translation.

As defined in Fig. 13, this preorder relation is stricter than the coercive subtyping used in our source

type system (presented in Fig. 15). An intersection type can be intuitively understood as a set of

distinct types. For example, the intersection type Bool&Char& (Int → Int) represents a set of
three distinct elements: Bool, Char, and Int → Int. Its width subtype must contain all these three

elements. Generally speaking, all component types in an intersection must be present in its width

subtype, excluding duplicates and top-like types. The ≒-equivalence groups types that map to the

same type index.

Lemma 5.9 (Eqivalent types). Some properties of the ≒-equivalence can be derived from proper-
ties of width subtyping:

• If lookup ℓ ∥A∥ ⇒ C1 and lookup ℓ ∥B∥ ⇒ C2 thenC1 ⊆ C2. Thus, by symmetry, if lookup ℓ ∥A∥ ⇒
C1 and lookup ℓ ∥B∥ ⇒ C2 then C1 ≈ C2.

• A ⊑ B if and only if all components of |B| can be found in |A|. Thus, by symmetry, A ≒ B if and
only if |A| = |B|.

• If A ⊑ B then ∥A∥ ⊆ ∥B∥. Thus, by symmetry, if A ≒ B then ∥A∥ ≈ ∥B∥.

The first one is a strong result about type translation: in a translated type, the type of a record

field can be determined by its associated label. Hence, for any two translated types ∥A∥ and ∥B∥,
looking up the same label ℓ will lead to equivalent types C1 and C1. For example, looking up an

integer label Z should always return an integer type Z. With the above properties, we can prove

that all translated types are well-formed.

Lemma 5.10 (Well-formedness of translated types). ∀𝐴, ⊢ ∥A∥.

Type-directed elaboration. Defined in Fig. 14, Γ ⊢ e ⇔ A ⇝ 𝜖 relates a source expression e to
a source type A under the typing context Γ and the typing mode ⇔, and the typing derivation
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Typing contexts Γ F · | Γ, x : A

Typing modes ⇔F⇐ | ⇒

Γ ⊢ e ⇔ A ⇝ 𝜖 (Type-directed elaboration)

Ela-Top

Γ ⊢ ⊤ ⇒ ⊤ ⇝ { }

Ela-TopAbs

⌉B⌈
Γ ⊢ 𝜆x . e : A → B ⇒ A → B ⇝ { }

Ela-TopRcd

Γ ⊢ e ⇒ A ⇝ 𝜖 ⌉A⌈
Γ ⊢ {ℓ = e} ⇒ {ℓ : A} ⇝ { }

Ela-Int

Γ ⊢ n ⇒ Z ⇝ {Z �⇒ n}

Ela-Var

x : A ∈ Γ

Γ ⊢ x ⇒ A ⇝ x

Ela-Abs

¬⌉B⌈
Γ, x : A ⊢ e ⇐ B ⇝ 𝜖

Γ ⊢ 𝜆x . e : A → B ⇒ A → B ⇝ {|A → B| �⇒ 𝜆x . 𝜖}

Ela-Sub

Γ ⊢ e ⇒ A ⇝ 𝜖1
𝜖1 : A <: B ⇝ 𝜖2

Γ ⊢ e ⇐ B ⇝ 𝜖2

Ela-App

Γ ⊢ e1 ⇒ A ⇝ 𝜖1 Γ ⊢ e2 ⇒ B ⇝ 𝜖2
𝜖1 : A • 𝜖2 : B ⇝ 𝜖3 : C

Γ ⊢ e1 e2 ⇒ C ⇝ 𝜖3

Ela-Rcd

¬⌉A⌈ Γ ⊢ e ⇒ A ⇝ 𝜖

Γ ⊢ {ℓ = e} ⇒ {ℓ : A} ⇝ {|{ℓ : A}| �⇒ 𝜖}

Ela-Proj

Γ ⊢ e ⇒ A ⇝ 𝜖1
𝜖1 : A • {ℓ} ⇝ 𝜖2 : B

Γ ⊢ e.ℓ ⇒ B ⇝ 𝜖2

Ela-Merge

Γ ⊢ e1 ⇒ A ⇝ 𝜖1
Γ ⊢ e2 ⇒ B ⇝ 𝜖2 A ∗ B

Γ ⊢ e1 , e2 ⇒ A&B ⇝ 𝜖1 ++ 𝜖2

Ela-Anno

Γ ⊢ e ⇐ A ⇝ 𝜖

Γ ⊢ e : A ⇒ A ⇝ 𝜖

𝜖1 : A • 𝜖2 : B ⇝ 𝜖3 : C (Distributive application)

A-Top

⌉A⌈
𝜖1 : A • 𝜖2 : B ⇝ { } : ⊤

A-Arrow

¬⌉B⌈ 𝜖2 : C <: A ⇝ 𝜖3

𝜖1 : A → B • 𝜖2 : C ⇝ (𝜖1 .|A → B|) 𝜖3 : B

A-And

¬⌉A&B⌈
𝜖1 : A • 𝜖2 : C ⇝ 𝜖3 : A′ 𝜖1 : B • 𝜖2 : C ⇝ 𝜖4 : B′

𝜖1 : A&B • 𝜖2 : C ⇝ 𝜖3 ++ 𝜖4 : A′
&B′

𝜖1 : A • {ℓ} ⇝ 𝜖3 : C (Distributive projection)

P-Top

⌉A⌈
𝜖1 : A • {ℓ} ⇝ { } : ⊤

P-RcdEq

¬⌉A⌈
𝜖 : {ℓ : A} • {ℓ} ⇝ 𝜖.|{ℓ : A}| : A

P-RcdNeq

¬⌉A⌈ ℓ1 ≠ ℓ2

𝜖 : {ℓ1 : A} • {ℓ2} ⇝ { } : ⊤

P-And

¬⌉A&B⌈
𝜖1 : A • {ℓ} ⇝ 𝜖2 : A′

𝜖1 : B • {ℓ} ⇝ 𝜖3 : B′

𝜖1 : A&B • {ℓ} ⇝ 𝜖2 ++ 𝜖3 : A′
&B′

Fig. 14. Type-directed elaboration of 𝜆+𝑖 .
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Ordinary types 𝐴◦, 𝐵◦,𝐶◦ F ⊤ | Z | A → 𝐵◦ | {ℓ : 𝐴◦}

𝜖1 : A <: B ⇝ 𝜖2 (Coercive subtyping)

S-Top

⌉𝐵◦ ⌈
𝜖 : A <: 𝐵◦ ⇝ { }

S-Int

𝜖 : Z <: Z ⇝ {Z �⇒ 𝜖.Z}

S-Arrow

¬⌉𝐵◦
2
⌈ x : B1 <: A1 ⇝ 𝜖1

(𝜖.|A1 → A2 |) 𝜖1 : A2 <: 𝐵
◦
2
⇝ 𝜖2

𝜖 : A1 → A2 <: B1 → 𝐵◦
2
⇝ {|B1 → 𝐵◦

2
| �⇒ 𝜆x . 𝜖2}

S-AndL

𝜖 : A <: 𝐶◦ ⇝ 𝜖′

𝜖 : A&B <: 𝐶◦ ⇝ 𝜖′

S-Rcd

¬⌉𝐵◦ ⌈ 𝜖.|{ℓ : A}| : A <: 𝐵◦ ⇝ 𝜖2

𝜖 : {ℓ : A} <: {ℓ : 𝐵◦} ⇝ {|{ℓ : 𝐵◦}| �⇒ 𝜖2}

S-AndR

𝜖 : B <: 𝐶◦ ⇝ 𝜖′

𝜖 : A&B <: 𝐶◦ ⇝ 𝜖′

S-Split

B1 ◁ B ▷ B2 𝜖 : A <: B1 ⇝ 𝜖1 𝜖 : A <: B2 ⇝ 𝜖2 𝜖1 : B1 ▷ B ◁ 𝜖2 : B2 ⇝ 𝜖3

𝜖 : A <: B ⇝ 𝜖3

Fig. 15. Coercive subtyping in 𝜆+𝑖 .

generates a target expression 𝜖 from e. The type system is bidirectional [Dunfield and Krishnaswami

2021; Pierce and Turner 2000]: under the inference mode (⇒), A is generated as an output; under

the checking mode (⇐), A is given as an input. Given the typing context, every well-typed e has a
unique inferred type; all the types that e can be checked against are supertypes of this inferred

type.

Rule Ela-Merge is the signature rule of calculi with disjoint intersection types. The disjointness
restriction on types (A ∗ B, defined in Fig. 11) prevents the overlapping of components in a merge.

Thus, in a well-typed term like e1 , ... , en, every subterm in the merge has disjoint types. Rule Ela-

Anno allows upcasting expressions to any supertypes. The subtyping relation is checked in rule Ela-

Sub via the subtyping judgment 𝜖1 : A <: B ⇝ 𝜖2, which also coerces the target term 𝜖1 to 𝜖2.

Rule Ela-App relies on distributive application, which is defined in the middle of Fig. 14. It takes the

function type A and the argument type B and, if A can be applied to B, produces the return type C.
Distributive application additionally allows intersection types and top-like types (can be regarded

as 0-ary intersections) to be applicable due to the distributivity of functions over intersections.

For example, (A1 → B1) & (A2 → B2) can be applied to A1 &A2 and produces B1 &B2. Besides,
𝜖1 : A • 𝜖2 : B ⇝ 𝜖3 : C uses 𝜖1 and 𝜖2 to generate the target term 𝜖3, reflecting the application in

the target language. Similarly, rule Ela-Proj relies on distributive projection to obtain the result

type. Given a label ℓ , the relation 𝜖1 : A • {ℓ} ⇝ 𝜖2 : B finds all field types in A that match ℓ and

returns them as an intersection type B, if there is more than one matched field. Similarly, 𝜖2 is the

target expression that extracts the corresponding fields in 𝜖1.

Rules Ela-Top, Ela-TopAbs, and Ela-TopRcd generate an empty record for top-like types, which

is a counterpart of the canonical top value. For non-top-like types, rules Ela-Int, Ela-Abs, and

Ela-Rcd produces records with a single label translated from the type directly. Consequently, all

elaborated terms are either reducible or are in a record form.
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B ◁ A ▷ C (Type splitting)

Sp-And

A ◁ A&B ▷ B

Sp-Arrow

B1 ◁ B ▷ B2
A → B1 ◁ A → B ▷ A → B2

Sp-Rcd

B1 ◁ B ▷ B2
{ℓ : B1} ◁ {ℓ : B} ▷ {ℓ : B2}

𝜖1 : A ▷ C ◁ 𝜖2 : B ⇝ 𝜖 (Coercive merging)

M-Top

⌉C ⌈ A ◁ C ▷ B

𝜖1 : A ▷ C ◁ 𝜖2 : B ⇝ { }

M-And

¬⌉A&B⌈
𝜖1 : A ▷ A&B ◁ 𝜖2 : B ⇝ 𝜖1 ++ 𝜖2

M-Arrow

¬⌉B1 ⌈ ¬⌉B2 ⌈
(𝜖1 .|A → B1 |) x : B1 ▷ B ◁ (𝜖2 .|A → B2 |) x : B2 ⇝ 𝜖

𝜖1 : A → B1 ▷ A → B ◁ 𝜖2 : A → B2 ⇝ {|A → B| �⇒ 𝜆x . 𝜖}

M-ArrowL

¬⌉B1 ⌈ ⌉B2 ⌈
(𝜖1 .|A → B1 |) x : B1 ▷ B ◁ { } : B2 ⇝ 𝜖

𝜖1 : A → B1 ▷ A → B ◁ 𝜖2 : A → B2 ⇝ {|A → B| �⇒ 𝜆x . 𝜖}

M-ArrowR

⌉B1 ⌈ ¬⌉B2 ⌈
{ } : B1 ▷ B ◁ (𝜖2 .|A → B2 |) x : B2 ⇝ 𝜖

𝜖1 : A → B1 ▷ A → B ◁ 𝜖2 : A → B2 ⇝ {|A → B| �⇒ 𝜆x . 𝜖}

M-Rcd

¬⌉A1 ⌈ ¬⌉A2 ⌈
𝜖1 .|{ℓ : A1}| : A1 ▷ A ◁ 𝜖2 .|{ℓ : A2}| : A2 ⇝ 𝜖

𝜖1 : {ℓ : A1} ▷ {ℓ : A} ◁ 𝜖2 : {ℓ : A2} ⇝ {|{ℓ : A}| �⇒ 𝜖}

M-RcdL

¬⌉A1 ⌈ ⌉A2 ⌈
𝜖1 .|{ℓ : A1}| : A1 ▷ A ◁ { } : A2 ⇝ 𝜖

𝜖1 : {ℓ : A1} ▷ {ℓ : A} ◁ 𝜖2 : {ℓ : A2} ⇝ {|{ℓ : A}| �⇒ 𝜖}

M-RcdR

⌉A1 ⌈ ¬⌉A2 ⌈
{ } : A1 ▷ A ◁ 𝜖2 .|{ℓ : A2}| : A2 ⇝ 𝜖

𝜖1 : {ℓ : A1} ▷ {ℓ : A} ◁ 𝜖2 : {ℓ : A2} ⇝ {|{ℓ : A}| �⇒ 𝜖}

Fig. 16. Type splitting and coercive merging in 𝜆+𝑖 .

Coercive subtyping. Defined in Fig. 15, 𝜖1 : A <: B ⇝ 𝜖2 takes a target expression 𝜖1 and

two source types A and B and produces a target term 𝜖2. Intuitively, when 𝜖1 has type ∥A∥, the
generated 𝜖2 will have a type that is equivalent to ∥B∥. The formal theorem will be given later

(Theorem 5.11) when establishing type soundness. Besides producing the coerced target term,

this relation also checks whether A is a subtype of B. For coercive subtyping, a more common

form of the judgment is A <: B ⇝ 𝑐 , where 𝑐 is a coercion function in the target language with

type ∥A∥ → ∥B∥. Instead of generating a coercion function, we directly transform the term. The

ACM Trans. Program. Lang. Syst.



36 Yaozhu Sun, Xuejing Huang, and Bruno C. d. S. Oliveira

main motivation behind our design is to generate more efficient terms: 𝜖2 can be understood as a

simplified result of the application 𝑐 𝜖1. By adopting this technique, we aim to skip some reduction

steps, ultimately improving the performance of code that relies on coercions. This idea has been

discussed in Section 4.1, and it is further optimized in Section 6.4.

To understand the subtyping check, we can ignore 𝜖1 and 𝜖2. In our formulation of subtyping,

type constructors like arrows and records distribute over intersections, e.g. A → B&C is equivalent

to (A → B) & (A → C). Such distributivity first appeared in the system proposed by Barendregt

et al. [1983] and is supported by 𝜆+𝑖 and 𝐹+𝑖 . We follow the subtyping algorithm design in 𝜆+𝑖 [Huang

et al. 2021]. It distinguishes types that have a form equivalent to intersection types from others.

Such types are called splittable types and can be separated into two via type splitting, which is

defined in Fig. 16. For example, A → B ◁ A → B&C ▷ A → C represents that A → B&C is

equivalent to the intersection of A → B and A → C. The notation 𝐴◦
stands for types that are not

splittable, which are called ordinary types.
In type splitting, the two split types are outputs. However, they are then used as inputs in the

coercive merging judgment 𝜖1 : A ▷ C ◁ 𝜖2 : B ⇝ 𝜖 , as defined in Fig. 16. If we omit 𝜖1 and

𝜖2 in this judgment, coercive merging characterizes the same relation as type splitting. In other

words, removing B1 ◁ B ▷ B2 from rule S-Split does not change the idea of subtyping. We retain

it to better represent the information flow in the subtyping algorithm: in rule S-Split, after being

generated from type splitting, B1 and B2 are used to coerce the same term e individually, and the

coerced results e1 and e2 are merged back, guided by the types. Note that, in this process, it is

possible to duplicate terms and lead to duplicate labels in the corresponding target record terms.

Soundness of elaboration. The semantics of our source calculus is given via an elaboration, which

reflects the compilation of CP.We establish our type-safety proofs on (1) the type safety of our target

calculus, and (2) the soundness of elaboration, which connects the source calculus to the target

calculus. Specifically, for every well-typed source expression, the typing derivation produces a target

term, and we prove that the target term is well-typed in the record calculus. In addition, its type is

equivalent to the translated type of the original source expression. The soundness of elaboration is

based on the soundness of coercive subtyping, distributive application, and distributive projection,

which guarantee that the terms generated from these judgments have the desired types. Note that

the premises of these soundness lemmas are coarser than their conclusion: the actual type of the

input term does not have to be equivalent to the annotated type. For example, in 𝜖1 : A <: B ⇝ 𝜖2,

𝜖1 only needs to have a subtype of ∥A∥ for 𝜖2 to be correctly typed. This is because, in these coercive

relations, the input terms are always used for projection (e.g. in rules S-Arrow and S-Rcd) but

never for concatenation. As long as the input terms have sufficient fields, other fields that they

have are unimportant.

Theorem 5.11 (Elaboration soundness). We have that:
• If 𝜖1 : A <: B ⇝ 𝜖2 and Δ ⊢ 𝜖1 : A and A ⊆ ∥A∥, then ∃B, Δ ⊢ 𝜖2 : B and B ≈ ∥B∥.
• If 𝜖1 : A • 𝜖2 : B ⇝ 𝜖3 : C and Δ ⊢ 𝜖1 : A and A ⊆ ∥A∥ and Δ ⊢ 𝜖2 : B and B ⊆ ∥B∥, then
∃C, Δ ⊢ 𝜖3 : C and C ≈ ∥C∥.

• If 𝜖1 : A • {ℓ} ⇝ 𝜖2 : B and Δ ⊢ 𝜖1 : A and A ⊆ ∥A∥, then ∃B, Δ ⊢ 𝜖2 : B and B ≈ ∥B∥.
• If Γ ⊢ e ⇔ A ⇝ 𝜖 then ∃A, |Γ | ⊢ 𝜖 : A and A ≈ ∥A∥.

5.3 Duplicates in Translation and Coherence of Subtyping
With the disjointness constraint enforced in rule Ela-Merge, all elaborated records originating from

that rule have distinct labels. However, we still have to take duplicates into account because they can

be generated by coercive subtyping. For example, 𝜖 : Z <: Z&Z ⇝ 𝜖 ++ 𝜖 duplicates 𝜖 . Note that

given 𝜖1, A, and B, there could be more than a single possible 𝜖2, generated by different derivations
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of subtyping 𝜖1 : A <: B ⇝ 𝜖2. Therefore, it is possible to have 𝜖1 : A <: B&B ⇝ 𝜖2 ++ 𝜖3
where 𝜖2 and 𝜖3 are different. In the proof of Theorem 5.11, we show such results do not violate

type well-formedness: 𝜖2 and 𝜖3 have equivalent types. Moreover, we conjecture that 𝜖2 and 𝜖3
have the same behavior, since similar results have been proven in the past (semantic coherence

or determinism) for variants of 𝜆+𝑖 [Bi et al. 2018; Huang et al. 2021]. Because the disjointness

restriction in rule Ela-Merge ensures that semantically different terms with equivalent types

cannot be introduced into one merge, it is sufficient to distinguish terms by the type indices.

Past coherence results. The technical reason for our coercive subtyping not producing a unique

result is that we allow types like A1 &A2 even if a non-top-like type B exists such that A1 <: B and

A2 <: B both hold, leading to two different subtyping derivation paths for A1 &A2 <: B. One way to
ensure the uniqueness of coercions, as utilized by previous work, is to reject such intersection types

via a disjointness constraint in type well-formedness [Alpuim et al. 2017]. If intersection types are

restricted in this way, we do not even need to worry about duplicates at all. However, unrestricted

intersection types are more expressive and are required when encoding bounded polymorphism [Xie

et al. 2020]. Moreover, imposing a disjoint constraint on all intersections significantly complicates

the proof of type soundness [Alpuim et al. 2017]. That is why all subsequent work [Bi et al. 2018,

2019; Fan et al. 2022; Huang et al. 2021], besides ours, relaxed the restriction on intersections.

For our source calculus to be coherent, it is necessary to ensure that all the coercions generated

from the same subtyping judgment are equivalent. Proving this property is challenging, especially

considering the main focus we had when designing the formal calculi is to justify the usefulness of

the compilation, for which the efficiency is more important. In other words, many design choices

in the formalization are driven by efficiency considerations, rather than by considerations for

making a proof of coherence easier. For instance, we use a novel and non-standard form of coercive

subtyping, which sacrifices the ability to do induction on the coercion structure. Nevertheless, the

coherence of the subtyping relation in previous work (and the determinism of the casting semantics

implied by subtyping) has already been proven [Bi et al. 2018; Huang et al. 2021]. Although our

setting differs slightly due to our use of a different target language, the previous results about

coherence provide us confidence that the elaboration here is also coherent.

Determinism in a direct operational semantics. Huang et al.’s variant of 𝜆+𝑖 uses a direct operational

semantics where annotations trigger subtyping checks and act as upcasts at run time, directly

manipulating source values. The upcasting process mirrors the approach of algorithmic subtyping,

which is similar to how coercions are generated in our subtyping judgments. For instance, the

expression 1 : Int& Int evaluates to 1 , 1. When an integer is expected, either component can be

selected. This type system permits duplicate components in merges. The operational semantics of

this variant has been proven to be deterministic and type-safe, providing evidence that no ambiguity

arises from subtyping when using disjoint merges.

Coherence for an elaboration semantics. Closer to our work, Bi et al.’s variant of 𝜆+𝑖 , also known

as NeColus, employs an elaboration semantics that is proven to be coherent. The NeColus calculus

covers the same set of expressions as our source calculus and also features a syntax-directed bidi-

rectional type system. It uses a different algorithm to decide subtyping, and provides a formulation

in declarative style, which is equivalent to ours (see Huang et al.’s work for a formalization of this

result). Most of the typing rules are also the same as ours, including the rule for merges and the

subsumption rule. The rules for lambda abstraction, application, and record projection are slightly

different in terms of requiring more or fewer type annotations, and NeColus does not have the

separate relations for distributive application and projection.

ACM Trans. Program. Lang. Syst.



38 Yaozhu Sun, Xuejing Huang, and Bruno C. d. S. Oliveira

The main difference between Bi et al.’s elaboration and ours, is that the target language for

NeColus is a different calculus called 𝜆𝑐 . 𝜆𝑐 is a variant of the simply typed 𝜆-calculus extended

with records, products, and explicit coercions. In NeColus, merges are translated into pairs. For

example, 1 , true is translated into ⟨1, true⟩. In the coherence theorem, Bi et al. prove that such

elaboration always leads to equivalent terms in the target language. Their proofs show that the

duplication that arises in coercive subtyping does not cause ambiguity in the target language.

Before discussing the coherence proof, let us compare the two elaboration frameworks with

some examples. Both 𝜆𝑐 and our 𝜆𝑟 only include the integer type Z as a representative of primitive

types, but we will use Bool and Int in our examples for demonstration. Besides, we replace the

coercions in 𝜆𝑐 by lambda terms and simplify all the elaboration results for easier comparison.

Furthermore, we include JavaScript code to show the same situation in the code generated by our

compiler.

Example 1. Consider the source expression:

1 : Int& Int : Int

The translation to 𝜆𝑟 is unique:

{|Int| �⇒ {|Int| �⇒ 1; |Int| �⇒ 1}.|Int|}

The translation to 𝜆𝑐 has multiple possibilities, including:

(𝜆x . x .fst) ⟨1, 1⟩ (𝜆x . x .snd) ⟨1, 1⟩

This example illustrates a challenging situation that involves two steps: first creating a term

corresponding to type Int& Int, and then selecting a component of type Int. In 𝜆𝑟 , the duplication

in the first step causes a label conflict, and the second step is deterministic because of the overriding

semantics; while in 𝜆𝑐 , it is the second step that brings potential ambiguity. With pairs serving as

the target for merges in 𝜆𝑐 , every component in merges can be identified and extracted by position.

The position information is analyzed from types during the elaboration. If the merge consists of

two terms of the same type, the two positions can be used interchangeably. Therefore, there are

two possible coercions that can upcast Int& Int to Int, namely 𝜆x . x .fst and 𝜆x . x .snd. Note that,
in a calculus with pairs, these two functions are clearly semantically different since they can be

applied to a pair argument like ⟨1, 2⟩, which would produce two different results. But the point is

that such pairs with different elements of the same type are never produced by the elaboration, so

these two coercions behave identically for the pairs that can be generated from the elaboration.
This idea applies, more generally, to types with the same type index in our elaboration, and

not just syntactically equal types. Types with the same type index are mutual subtypes and can

interchange with each other in subtyping derivation. Another observation from this example is

that, whenever there is an overriding in 𝜆𝑟 , there will be multiple possibilities in the translation to

𝜆𝑐 .

Finally, the compiled JavaScript code (without optimization) is as follows:

const $1 = {}; $1.int = 1; $1.int = 1;

const $2 = {}; $2.int = $1.int;

The JavaScript code generated by our compiler shares the same overriding semantics as 𝜆𝑟 : $1.int is

assigned twice, and the second assignment overrides the first one. Note that we have implemented

several optimizations in our compiler, including eliminating redundant coercions, so the actual

code generated by our compiler is more concise than the one shown here. Since Int& Int and
Int are equivalent types, no coercions will be inserted in the optimized code. We keep the code
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unoptimized here to better illustrate the correspondence between the JavaScript code and the 𝜆𝑟
term.

Example 2. Consider another source expression:

(𝜆𝑓. 𝑓) : (Int → Int) & (Int → Int&Bool) → Int → Int

This time the translation to 𝜆𝑟 has two possibilities. Here we use A to denote the type (Int →
Int) & (Int → Int&Bool) → Int → Int:

{|A| �⇒ 𝜆𝑓. {|Int → Int| �⇒ 𝜆x . {|Int| �⇒ ((𝑓.|Int → Int|) {|Int| �⇒ x .|Int|}).|Int|}}}
{|A| �⇒ 𝜆𝑓. {|Int → Int| �⇒ 𝜆x . {|Int| �⇒ ((𝑓.|Int → Int&Bool|) {|Int| �⇒ x .|Int|}).|Int|}}}

The two possibilities correspond to the translation to 𝜆𝑐 as follows:
6

𝜆𝑓. 𝜆x . 𝑓.fst x 𝜆𝑓. 𝜆x . (𝑓.snd x).fst
This is a case where 𝜆𝑟 has multiple syntactically different translation results. The higher-order

function expects a parameter 𝑓 , which is a record in 𝜆𝑟 that has two fields with label |Int → Int|
and label |Int → Int&Bool|. These two type indices are different, but the two types are not disjoint.
Therefore, if their common supertype is desired in a source context, both fields can be selected. For

the purpose of coherence, the two results originating from both sides should behave the same; that is

to say, they should have equivalent semantics for the overlapping part of their types (i.e. Int → Int).
This is also needed for 𝜆𝑐 : the two translated terms should only apply to a pair of functions that

have the same behavior, if we only consider the integer part in their return results. Because of

disjointness, the only way to create a term with type (Int → Int) & (Int → Int&Bool) is using one
lambda abstraction, such as (𝜆x . x , true) : Int → Int&Bool : (Int → Int) & (Int → Int&Bool).
It does not type-check to use a merge of two functions with types Int → Int and Int → Int&Bool
as these two types are not disjoint. Therefore, the function that can be selected by the multiple

coercions is the same function, which was just duplicated twice.

The compilation to JavaScript may have two possible versions as well:

const $1 = {};

$1.fun_fun_int = function ($f) {

const $2 = {};

$2.fun_int = function ($3) {

const $4 = {};

$4.int = $3.int;

const $5 = $f.fun_int($4);

const $6 = {};

$6.int = $5.int;

return $6;

};

return $2;

};

const $1 = {};

$1.fun_fun_int = function ($f) {

const $2 = {};

$2.fun_int = function ($3) {

const $4 = {};

$4.int = $3.int;

const $5 = $f['fun_(bool&int)']($4);

const $6 = {};

$6.int = $5.int;

return $6;

};

return $2;

};

Note that the only difference is the value of $5: one is created by applying $f.fun_int and the

other by applying $f['fun_(bool&int)'] (n.b. $f.fun_(bool&int) does not work because the label

6
The 𝜆𝑐 terms look much simpler because they are derived from declarative subtyping for brevity. If we derive the coercions

from algorithmic subtyping, the terms will be more complicated:

𝜆x1 . (𝜆x2 . (𝜆x3 . 𝜆x4 . (x3 x4 ) ) ( (𝜆x5 . x5 .fst) x2 ) ) x1
𝜆x1 . (𝜆x2 . (𝜆x4 . 𝜆x5 . ( (𝜆x6 . x6 .fst) (x4 x5 ) ) ) ( (𝜆x7 . x7 .snd) x2 ) ) x1
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contains special characters). The two versions will behave identically, so it does not matter which

one is actually generated. Similarly to the situation in 𝜆𝑟 , as long as the CP code is well-typed and

is compiled to JavaScript by our compiler, $f.fun_int and $f['fun_(bool&int)'] originate from

the same function and behave the same as only the integer part of the return value (i.e. $5.int) is

used. Again, the JavaScript code is deliberately kept unoptimized to show the correspondence with

the 𝜆𝑟 terms. In the optimized code for the first version, for instance, the creation of $4 and $6 can

be eliminated.

5.4 Coherence Proof for NeColus and Its Adaptation to Our Source Language
The coherence result in NeColus is established using a semantic approach based on logical rela-
tions [Biernacki and Polesiuk 2015; Tait 1967]. Here we provide a summary of the key steps in that

coherence proof. We will use 𝐸, 𝑉 , 𝜏 , and Δ to represent the expressions, values, types, and typing

contexts in 𝜆𝑐 , the target language for NeColus.

Coherence via contextual equivalence. The coherence theorem proven for NeColus is as follows:

Theorem 5.12 (Coherence of NeColus). If Γ ⊢ 𝑒 ⇔ 𝐴 then Γ ⊢ 𝑒 ≃ctx 𝑒 : 𝐴.

Here 𝑒 is a source expression, so it is to say that a well-typed source expression is contextually

equivalent to itself. The notation⇔ stands for both bidirectional typing modes, namely inference

(⇒) and checking (⇐). Contextual equivalence is defined as:

Definition 5.13 (Contextual eqivalence in NeColus). Γ ⊢ 𝑒1 ≃ctx 𝑒2 : 𝐴 ≜

∀𝐸1 𝐸2𝐶 𝐷, if Γ ⊢ 𝑒1 ⇔ 𝐴 ⇝ 𝐸1 and Γ ⊢ 𝑒2 ⇔ 𝐴 ⇝ 𝐸2 and 𝐶 : (Γ ⇔ 𝐴) ↦→ (· ⇔ Z) ⇝ 𝐷

then 𝐷 [𝐸1] ≃ 𝐷 [𝐸2] .

The intuition behind the definition is that two elaborated terms (𝐸1 and 𝐸2) should be considered

equivalent if, for any well-typed contexts (that could be generated during the elaboration), plugging

either of them in makes no difference to the final evaluation result. Here 𝐶 and 𝐷 stand for source

and target expression contexts, respectively. An expression context is an expression that contains

a hole [·]. The typing judgment for contexts 𝐶 : (Γ ⇔ 𝐴) ↦→ (· ⇔ Z) ⇝ 𝐷 means that, given

any well-typed NeColus expression Γ ⊢ 𝑒 ⇔ 𝐴, we have · ⊢ 𝐶 [𝑒] ⇔ Z, and the source context 𝐶

corresponds to a target context 𝐷 in elaboration, which, similarly, make 𝐷 [𝐸1] and 𝐷 [𝐸2] have
type Z. In this definition, ≃ stands for Kleene equality. That is to say, 𝐷 [𝐸1] and 𝐷 [𝐸2] evaluate to
the same integer. Here the definition intentionally excludes the contexts that cannot be obtained

from a well-typed NeColus expression. For example, the source expression (𝜆x . x) : Z&Z → Z
can be elaborated into 𝜆x . x .fst or 𝜆x . x .snd. To judge whether they have the same contribution

to computation, we should not consider the target expression context [·]⟨1, 2⟩, that is, applying
the elaborated function to ⟨1, 2⟩, because its corresponding source term violates the disjointness

restriction and thus is not well-typed.

Heterogeneous logical relations. NeColus introduces two heterogeneous logical relations that

relates values and terms, respectively, in the target language 𝜆𝑐 , as shown in Fig. 17. The logical

relation is designed to capture the intuition of coherent expressions – those that are safe to coexist

in pairs, as they are unambiguous in every valid context.

First,V⟦𝜏1;𝜏2⟧ relates all duplicate values. For example, (1, 1) ∈ V⟦Z;Z⟧ because it never leads

to ambiguity. Second, it is proven that all disjoint values are also related. For example, as long as

we have Z ∗ {ℓ : Z}, we also have (1, {ℓ = 1}) ∈ V⟦Z; {ℓ : Z}⟧. For product types, the relation
distributes over the product constructor ×. This reflects the disjointness of intersection types, that

is, A& B ∗ C if and only if A ∗ C and B ∗ C. Finally, E⟦𝜏1;𝜏2⟧ states that 𝐸1 and 𝐸2 are related if they
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(𝑉1,𝑉2) ∈ V⟦Z;Z⟧ ≜ ∃n, 𝑉1 =𝑉2 = n

(𝑉1,𝑉2) ∈ V⟦𝜏1 → 𝜏2;𝜏
′
1
→ 𝜏 ′

2
⟧ ≜ ∀(𝑉 ,𝑉 ′) ∈ V⟦𝜏1;𝜏 ′1⟧, (𝑉1𝑉 ,𝑉2𝑉 ′) ∈ E⟦𝜏2;𝜏 ′2⟧

({ℓ =𝑉1}, {ℓ =𝑉2}) ∈ V⟦{ℓ : 𝜏1}; {ℓ : 𝜏2}⟧ ≜ (𝑉1,𝑉2) ∈ V⟦𝜏1;𝜏2⟧
(⟨𝑉1,𝑉2⟩,𝑉3) ∈ V⟦𝜏1 × 𝜏2;𝜏3⟧ ≜ (𝑉1,𝑉3) ∈ V⟦𝜏1;𝜏3⟧ ∧ (𝑉2,𝑉3) ∈ V⟦𝜏2;𝜏3⟧
(𝑉3, ⟨𝑉1,𝑉2⟩) ∈ V⟦𝜏3;𝜏1 × 𝜏2⟧ ≜ (𝑉3,𝑉1) ∈ V⟦𝜏3;𝜏1⟧ ∧ (𝑉3,𝑉2) ∈ V⟦𝜏3;𝜏2⟧

(𝑉1,𝑉2) ∈ V⟦𝜏1;𝜏2⟧ ≜ true otherwise

(𝐸1, 𝐸2) ∈ E⟦𝜏1;𝜏2⟧ ≜ ∃𝑉1𝑉2, 𝐸1→∗𝑉1 ∧ 𝐸2→∗𝑉2 ∧ (𝑉1,𝑉2) ∈ V⟦𝜏1;𝜏2⟧

Fig. 17. Logical relations for 𝜆𝑐 (the target calculus of NeColus).

evaluate to related values. The relation is then lifted to open terms via a semantic interpretation

of typing contexts, and the logical equivalence is defined in a standard way: two open terms are

related if every pair of related closing substitutions make them related. Δ ⊢ 𝐸1 ≃log 𝐸2 : 𝜏 denotes

that two well-typed expressions are logically equivalent with respect to the same typing context

and the same type.

Fundamental property. In NeColus, a fundamental property is proven, stating that any two 𝜆𝑐
terms elaborated from the same NeColus expression are related by the logical relation. Here ∥Γ∥
and ∥𝐴∥ stand for the translation of typing contexts and types from NeColus to 𝜆𝑐 .

Theorem 5.14 (Fundamental property ofNeColus). If Γ ⊢ 𝑒 ⇔ 𝐴 ⇝ 𝐸1 and Γ ⊢ 𝑒 ⇔ 𝐴 ⇝ 𝐸2,
then ∥Γ∥ ⊢ 𝐸1 ≃log 𝐸2 : ∥𝐴∥.

Note that Δ ⊢ 𝐸 ≃log 𝐸 : 𝜏 does not hold for every well-typed target 𝐸. For example, the logical

relation does not consider ⟨1, 2⟩. Since there is no possible elaboration (the source expression

1 , 2 violates the disjoint constraint), this does not prevent the fundamental property. Actually the

limitation on coherent products helps the logical relation to accept some semantically equivalent

terms like 𝜆x . x .fst and 𝜆x . x .snd: they are two translations of (𝜆x . x) : Int& Int → Int. With the

assumption that the two integers in the pair argument are related by the logical relation, choosing

either one leads to the same result.

Soundness. Since the fundamental property has shown that different elaborations of the same

NeColus expression are logically equivalent, the remaining step is to show that logical equivalence

is sound with respect to contextual equivalence.

A compatibility lemma for coercions is proven during the establishment of the fundamental

property: if two terms are related by the logical relation, after applying a coercion to one term,

they are still related. Based on this lemma, we can prove that the logical relation is preserved by

all well-typed NeColus contexts, including the contexts that coverts a term to an integer result,

for which the logical relation implies Kleene equality. Then it is straightforward to show that the

logical relation is sound.

Theorem 5.15 (Soundness w.r.t. contextual eqivalence in NeColus). If Γ ⊢ 𝑒1 ⇔ 𝐴 ⇝ 𝐸1
and Γ ⊢ 𝑒2 ⇔ 𝐴 ⇝ 𝐸2 and ∥Γ∥ ⊢ 𝐸1 ≃log 𝐸2 : ∥𝐴∥, then Γ ⊢ 𝑒1 ≃ctx 𝑒2 : 𝐴.

Finally, the coherence theorem follows directly from the fundamental property and the soundness

result. In other words, we can conclude that any two 𝜆𝑐 terms elaborated from the same NeColus

expression are contextually equivalent.
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(𝜈1, 𝜈2) ∈ V∇⟦Z;Z⟧ ≜ ∃n, 𝜈1 = 𝜈2 = n

(𝜈1, 𝜈2) ∈ V∇⟦A1 → B1;A2 → B2⟧ ≜ ∀(𝜈, 𝜈 ′) ∈ V∇⟦A1;A2⟧,
(𝜈1 𝜈, 𝜈2 𝜈 ′) ∈ E∇⟦B1;B2⟧

({ℓ1 �⇒ 𝜈1}, {ℓ2 �⇒ 𝜈2}) ∈ V∇⟦{ℓ1 �⇒ A1}; {ℓ2 �⇒ A2}⟧ ≜ (𝜈1, 𝜈2) ∈ V∇⟦A1;A2⟧ if ℓ1 = ℓ2 = Z

or (∃Tsi, ℓ1 = Ts1 → Ts2 ∧ ℓ2 = Ts3 → Ts4)

or (∃ℓ Tsi, ℓ1 = {ℓ : Ts1} ∧ ℓ2 = {ℓ : Ts2})
({ℓ1 �⇒ 𝜈1; ... ; ℓn �⇒ 𝜈n}, 𝜈 ′) ∈ V∇⟦{ℓ1 �⇒ A | 𝜌};B⟧ ≜ ({ℓ1 �⇒ 𝜈1}, 𝜈 ′) ∈ V∇⟦{ℓ1 �⇒ A};B⟧ ∧

({ℓ2 �⇒ 𝜈2; ... ; ℓn �⇒ 𝜈n}, 𝜈 ′) ∈ V∇⟦𝜌 ;B⟧
(𝜈 ′, {ℓ1 �⇒ 𝜈1; ... ; ℓn �⇒ 𝜈n}) ∈ V∇⟦B; {ℓ1 �⇒ A | 𝜌}⟧ ≜ (𝜈 ′, {ℓ1 �⇒ 𝜈1}) ∈ V∇⟦B; {ℓ1 �⇒ A}⟧ ∧

(𝜈 ′, {ℓ2 �⇒ 𝜈2; ... ; ℓn �⇒ 𝜈n}) ∈ V∇⟦B; 𝜌⟧
(𝜈1, 𝜈2) ∈ V∇⟦A1;A2⟧ ≜ true otherwise

(𝜖1, 𝜖2) ∈ E∇⟦A1;A2⟧ ≜ ∃𝜈1 𝜈2, 𝜖1→∗𝜈1 ∧ 𝜖2→∗𝜈2 ∧
(𝜈1, 𝜈2) ∈ V∇⟦A1;A2⟧

Fig. 18. Logical relations for 𝜆𝑟 (our target calculus).

Adapting the proof to our source language: a sketch. While our compilation scheme makes some

different design choices for efficiency, it essentially shares the same principle of coherence with

NeColus. Here we provide a sketch of how to adapt the ideas from the NeColus proof to our work,

although we do not provide a full proof.

We can define two logical relations for values (V∇⟦A;B⟧) and terms (E∇⟦A;B⟧) in 𝜆𝑟 , as

presented in Fig. 18. In this definition, we relate two records if they do not cause ambiguity under

any contexts that can be elaborated from our source calculus. That is to say, for two records to be

related, any pair of fields from them, as long as their labels correspond to overlapping source types,

must have related fields. For example, relating {|Int → Int&Bool| �⇒ 𝜈1} and {|Int → Int| �⇒ 𝜈2}
in the logical relation requires 𝜈1 and 𝜈2 to be related. Considering a source expression context

[·] : Int → Int, it applies to both records and leads to two projections that extract 𝜈1 and 𝜈2,

respectively. So 𝜈1 and 𝜈2 should be equivalent. Besides, disjoint terms are also related. For example,

{|{ℓ1 : A}| �⇒ 𝜈1} and {|{ℓ2 : B}| �⇒ 𝜈2} correspond to two source records of type {ℓ1 : A} and type

{ℓ2 : B}. If ℓ1 = ℓ2, their relation should be decided by the fields; if ℓ1 ≠ ℓ2, they are always related

because of disjointness. The relation of terms can be lifted to open terms like in NeColus. We

expect the logical equivalence derived from the logical relation to be compatible with our coercive

subtyping, and a fundamental property should follow. The main rationale is that the overlapping

part must have the same origin, restricted by type disjointness. What coercions do is to decompose

and recompose the behaviors according to the types (labels). Disjoint terms will be distinguished

clearly in the process. A field of |{ℓ1 : A}|, for example, will not be used to build a field of |{ℓ2 : A}|
if ℓ1 ≠ ℓ2. No 𝜆+𝑖 context should violate the derived logical equivalence. We anticipate a similar

theorem asserting that logical equivalence implies contextual equivalence, provided that contextual

equivalence is defined in a manner analogous to NeColus. Consequently, the coherence theorem

would follow, in the style of Theorem 5.12.
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const $1 = { int: 48 };

const $2 = { bool: true };

const $3 = { ...$1, ...$2 };

const $4 = { int: 32 };

const $5 = $chr.fun_char($4);

const $6 = { ...$3, ...$5 };

(a) Before optimization: 6 objects.

const $1 = {};

$1.int = 48;

$1.bool = true;

const $2 = {};

$2.int = 32;

$chr.fun_char($2, $1);

(b) After optimization: 2 objects.

Fig. 19. Simplified JavaScript code for 48 , true , chr 32.

6 Implementation Details
This section introduces our concrete implementation of the CP compiler that targets JavaScript.

The full set of compilation rules can be found in Appendix A. Our implementation is available in

the supplementary materials.

6.1 From Elaboration Semantics to JavaScript Code Generation
In the elaboration semantics presented in Section 5, we use a 𝜆-calculus with extensible records as

the target. In the actual compilation, records are modeled as JavaScript objects, and type indices are

realized as objects’ property names. For example, 48 , true compiles to { int: 48, bool: true } in

JavaScript. Besides, record concatenation can be directly represented by object merging using the

spread syntax like { ...obj1, ...obj2 }.

As we have mentioned, the formalized target language is a functional calculus, but JavaScript is

an imperative language. The mismatch in programming paradigms is an important consideration

when implementing the compilation to JavaScript. We consider two designs of target forms: one is

based on static single assignment (SSA) [Cytron et al. 1991], and the other is based on destination-
passing style (DPS) [Shaikhha et al. 2017]. We eventually choose the latter due to performance

reasons, which we will explain next.

Reducing intermediate objects. In our initial design based on the SSA form, every subterm in a

merge creates a new object in the compiled JavaScript code. Consequently, there will be too many

intermediate objects that are useless. For example, consider the merge 48 , true , chr 32, where chr
is a function that converts an integer to a character, and the compiled function has been stored

in $chr. We need to create six JavaScript objects in the SSA-based form, as shown in Fig. 19a. As

mitigation, we adopt a new design based on DPS. We just create one object for the merge (e.g. $1

in Fig. 19b) and pass the variable down to subterms to update their corresponding properties. To

further prevent the function application (e.g. chr 32) from creating any intermediate object, we add

an extra parameter when compiling all functions, including chr. The destination object (e.g. $1) is

passed to the compiled function as the last argument, and the function body will directly write to

that argument instead of creating a new object. In other words, $1 is an output parameter while $2

is an input. As a result, we reduce the creation of six objects to only two objects and avoid two

object concatenations, as shown in Fig. 19b.

6.2 Parametric Polymorphism
The compilation of polymorphic terms is not formalized in Section 5, so here we introduce our

solution in more detail. The challenge posed by parametric polymorphism is mainly because type

arguments are unknown until type application. For those terms whose types contain free variables,
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const $poly = {};

$poly['forall_fun_(1&int)'] = function ($A, $1) {

$1['fun_' + toIndex([ ...$A, 'int' ])] = function ($x, $2) {

for (const $A$elem of $A) $2[$A$elem] = $x[$A$elem];

$2.int = 48;

};

};

(a) poly = /\(A * Int). \(x: A) → x , 48.

const $3 = {}; const $4 = {};

$poly['forall_fun_(1&int)']([ 'string', 'bool' ], $4);

const $5 = {}; $5.string = 'foo'; $5.bool = true;

$4['fun_(bool&int&string)']($5, $3);

(b) poly @(String & Bool) ("foo" , true).

function toIndex(tt) {

const ts = tt.sort().filter((t, i) ⇒ t === 0 || t !== tt[i-1]);

if (ts.length === 1) return ts[0];

else return '(' + ts.join('&') + ')';

};

(c) toIndex: an auxiliary function for generating type indices at run time.

Fig. 20. Simplified JavaScript code for polymorphic terms.

we can only generate type indices at run time. For example, Fig. 20a shows the simplified JavaScript

code for the following definition in CP:

poly = /\(A * Int). \(x: A) → x , 48;

Here the notation /\(A * Int) represents a type parameter A bound by a Λ-function where A

is disjoint with Int. The poly function can be typed as ∀A ∗ Int.A → A& Int. We employ a

de Bruijn index [de Bruijn 1972] to represent the bound variable A, so the Λ-function’s type index is
"forall_fun_(1&int)". In contrast, the inner 𝜆-function’s type index is more intriguing. Before we

introduce our approach, let us first see an example of applying poly:

poly @(String & Bool) ("foo" , true)

The type parameter is instantiated with an intersection type (String & Bool), and Fig. 20b shows

the simplified JavaScript code for the application. After poly is instantiated, the inner 𝜆-function

will be used with concrete type indices (e.g. "fun_(bool&int&string)") instead of something like

"fun_(A&int)". To achieve this, we pass the instantiated type as an argument to the outerΛ-function.
The argument is in the form of a JavaScript array, which consists of the component types in the

case of an intersection type. The array is empty for top-like types, or it is a singleton array for

non-intersection, non-top-like cases. We also predefine a toIndex function to help generate the

type index based on the runtime instantiation, whose definition is shown in Fig. 20c. The toIndex

function accepts an array of types and generates their intersection’s type index. To fit in with

the notion of equivalent types in Section 4.3, it will sort and deduplicate the component types.

Now that some type indices are dynamically generated, we have to use obj[toIndex($A)] instead
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const $1 = {};

$1['rcd_x:int'] =

$1['rcd_y:int'];

(a) By value.

const $1 = {};

$1.__defineGetter__(

'rcd_x:int',

function () {

return $1['rcd_y:int'];

});

(b) By thunk.

const $1 = {};

$1.__defineGetter__(

'rcd_x:int',

function () {

delete this['rcd_x:int'];

return this['rcd_x:int'] =

$1['rcd_y:int'];

});

(c) By memoized thunk.

Fig. 21. Simplified JavaScript code for { x = this.y }.

of obj.name directly. Such a feature is called first-class labels [Leijen 2004] and is supported in

JavaScript via computed property names with brackets. The situation in Fig. 20a is a bit more

complicated because the type of the inner 𝜆-function is A → A& Int, so the dynamically computed

type index is "fun_" + toIndex([ ...$A, "int" ]).

As illustrated above, the compiled code for polymorphic definitions incurs overhead due to

the dynamic computation of type indices. In mainstream languages, parametric polymorphism is

implemented via either erasure [Igarashi et al. 2001] or monomorphization [Griesemer et al. 2020].

Our compilation scheme cannot erase type information at run time, so monomorphization is a

potential direction for improving the performance of polymorphic code. We leave this for future

work.

6.3 Lazy Evaluation
In the most recent work by Fan et al. [2022], 𝐹+𝑖 is formalized as a call-by-name calculus to correctly

model trait instantiation. A simple example is as follows:

type Rcd = { x: Int; y: Int };

new (trait [this: Rcd] ⇒ { x = this.y; y = 48 })

The program will not terminate if evaluated using the call-by-value strategy. That is why Fan

et al. go for a call-by-name semantics and evaluate record fields lazily. However, a naive call-by-

name implementation may evaluate the same record field more than once and cause a significant

slowdown. Even with proper memoization (call-by-need), the performance of generated code is

still not ideal as JavaScript does not support lazy evaluation natively. In our implementation, we

employ a hybrid strategy: only self-annotated trait fields are lazily evaluated, and other language

constructs including function applications are strictly evaluated. This approximates the semantics

in conventional OOP languages, which are call-by-value in terms of initializing fields and calling

methods, except for lazy fields.

To better illustrate different evaluation strategies for record fields, we show three code snippets

generated for the field { x = this.y }. Fig. 21a employs strict evaluation, but instead of non-

termination, the issue here is that the field y is not yet available, so field x is unexpectedly assigned

undefined. This issue severely limits self-references, and the code in Fig. 21a would be broken. Thus

we need a better approach. Fig. 21b resolves the issue by adding a thunk. The field is wrapped in a

getter, and thus the computation of this.y is delayed until the whole record is constructed with the

field y available. But note that the getter is called every time the field is accessed. This is undesirable

as the computation in the thunk would be triggered on every access to the field. We optimize this

ACM Trans. Program. Lang. Syst.



46 Yaozhu Sun, Xuejing Huang, and Bruno C. d. S. Oliveira

𝜖1 : A <:± B ⇝ 𝜖2 (Optimized coercive subtyping)
S-Eqiv

A ≒ B

𝜖 : A <:+ B ⇝ 𝜖

S-AndL

𝜖 : A <:− C ⇝ 𝜖′

𝜖 : A&B <:± C ⇝ 𝜖′

S-Arrow

x : B1 <:+ A1 ⇝ 𝜖1 (𝜖.|A1 → A2 |) 𝜖1 : A2 <:
+ B2 ⇝ 𝜖2

𝜖 : A1 → A2 <:
± B1 → B2 ⇝ {|B1 → B2 | �⇒ 𝜆x . 𝜖2}

Fig. 22. Selected rules for optimized coercive subtyping.

by memoizing fields using smart getters.7 As shown in Fig. 21c, once the field is evaluated, the getter

is deleted, and the value is stored instead. Our implementation automatically detects self-annotated

trait fields and applies the last approach to them; for other cases, the first approach is applied. By

this means, self-references and trait instantiation in CP are correctly supported while maintaining

good performance for other language constructs.

6.4 Important Optimizations
Eliminating redundant coercions. In the rules of coercive subtyping shown in Fig. 15, even 𝐴 <: 𝐴

may go through a lot of rules when 𝐴 is a complex intersection type. However, as long as we

encounter subtyping between equivalent types, we do not need any coercion code. To implement

this optimization, an immediate idea would be:

• Adding a special case to rule Ela-Sub such that if A ≒ B then 𝜖1 = 𝜖2.

Unfortunately, this rule does not deal with many important cases. For instance, when checking

A → B <: A → C, we would like to avoid applying coercions to the inputs of the function (since

they have the same type). Therefore, besides the rule above, we may consider:

• Adding an extra rule (say S-Eqiv in Fig. 22) such that if A ≒ B then 𝜖 : A <: B ⇝ 𝜖 .

However, this idea is incorrect when an intersection type occurs on the left-hand side. For example,

when upcasting 48 , true to type Int, the coercion is missing in the subtyping derivation:

Int ≒ Int

{int �⇒ 48; bool �⇒ true} : Int <: Int ⇝ {int �⇒ 48; bool �⇒ true}
S-Eqiv

{int �⇒ 48; bool �⇒ true} : Int&Bool <: Int ⇝ {int �⇒ 48; bool �⇒ true}
S-AndL

Observing that rules S-AndL and S-AndR are the root cause of missing coercions, we add an extra

flag that indicates the applicability of rule S-Eqiv to fix the latter idea. As shown in Fig. 22, by

default (<:+) the optimization S-Eqiv can apply, but it will be disabled (<:−) in the derivations of

rule S-AndL (as well as rule S-AndR), and re-enabled in derivations of rule S-Arrow (as well as

rules S-All and S-Rcd). In some rules, the flag does not matter, so we use <:± to mean that both

cases apply. The complete rules targeting JavaScript can be found in Appendix A.

For a simple example of the optimized code, we consider a CP function that takes a parameter of

type Int&Bool, and we pass a merge of type Bool&Int as its argument:

(\(x:Int&Bool) → x:Int) (true , 48)

The compiled JavaScript for this function application is:

7
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/get#smart_self-overwriting_lazy_getters
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const $1 = {};

const $2 = {}; $2.fun_int = function ($x, $3) { $3.int = $x.int };

const $4 = {}; $4.bool = true; $4.int = 48;

$2.fun_int($4, $1);

Although it goes through the rule A-Arrow to check the argument of type Bool&Int against its

supertype Int&Bool, there is no coercion inserted for $4. This is just due to the elimination of

coercions for subtyping between equivalent types (Bool& Int ≒ Int&Bool).

Optimizing record projection. In the formalization of 𝐹+𝑖 by Fan et al. [2022], a record with more

than one label can only be projected after a coercion is inserted to remove irrelevant labels. For

example, {x = 1; y = 2}.x in CP has to be elaborated into ({x = 1},{y = 2} : {x: Int}).x in 𝐹+𝑖
to make the record projection work. If a similar technique is used in the CP compiler, there will

be too many coercions that lead to poor performance. This flaw is because the formalization of

𝐹+𝑖 reuses the rules of distributive application for record projection. However, the semantics for

distributive projection is slightly different: we do not require that every component of a record can

be projected by the same label. Therefore, we add rule JP-RcdNeq to safely ignore irrelevant fields.

The complete rules have been formalized in Fig. 14. By implementing the new rules for distributive

projection, the compiled JavaScript can directly handle projection for multi-field records.

Reducing object copying. Although the DPS-based design reduces the number of intermediate

objects, it sometimes introduces unnecessary object copying. For example, consider a function id

that takes a parameter of type Double&Int&String and returns it as is:

id (x: Double&Int&String) = x;

The compiled JavaScript code based on DPS is shown in Fig. 23a. The function always copies the

fields from the parameter $x to the destination object $1. Such object copying is necessary if the

result of the function call is part of a merge (e.g. id 𝑦 , true), but it is inefficient otherwise (e.g.

id 𝑦 + 1). To optimize this, we do not pass a destination object to the function if the function call

does not occur in a merge, as shown in Fig. 24a. The function call in a merge still follows the

DPS design we discussed earlier, as shown in Fig. 24b. To distinguish these two cases, we add a

dynamic check in the compiled function to avoid unnecessary copying when the destination ($1) is

undefined, as shown in Fig. 23b.

Optional destination objects. We have avoided unnecessary copying when a destination is absent,

but what about the dual case: how to avoid a fresh object when a destination is present? Since the

body of the previous function id is just a variable, no fresh object is created in any case. Let us

consider another function con, which returns a merge of false and 0 regardless of the input:

con (_: Top) = false,0;

The compiled JavaScript code is shown in Fig. 25. $1 || {} on the first line of the function body

checks if the destination ($1) is present. If it is, $2 is just an alias of $1; otherwise, a fresh object {}

is created and assigned to $2. By this means, we avoid creating a fresh object if the destination is

provided.

Avoiding boxing/unboxing. Although extensible records, or more specifically, JavaScript objects,

serve as an excellent target for merges in CP, they are not so efficient when only primitive values

and their computation are involved. For example, when compiling 1 + 2 to JavaScript, the naive

approach is shown in Fig. 26a. It would first create two objects for 1 and 2, then access their

"int" fields to get the values, perform the addition, and finally create a new object for the result.

These tedious wrapping/unwrapping of objects are similar to boxing/unboxing in Java and are

ACM Trans. Program. Lang. Syst.



48 Yaozhu Sun, Xuejing Huang, and Bruno C. d. S. Oliveira

const $id = {};

$id['fun_(double&int&string)'] = function ($x, $1) {

$1.double = $x.double; $1.int = $x.int; $1.string = $x.string;

};

(a) Before optimization: always copying fields from $x to $1.

const $id = {};

$id['fun_(double&int&string)'] = function ($x, $1) {

if ($1) { $1.double = $x.double; $1.int = $x.int; $1.string = $x.string; }

return $x;

};

(b) After optimization: no copying when $1 is undefined.

Fig. 23. Simplified JavaScript code for id (x: Double&Int&String) = x.

const $1 = {};

const $2 = $id['fun_(double&int&string)']($y);

const $3 = {}; $3.int = 1;

$1.int = $2.int + $3.int;

(a) id 𝑦 + 1.

const $1 = {};

$id['fun_(double&int&string)']($y, $1);

$1.bool = true;

(b) id 𝑦 , true.

Fig. 24. Simplified JavaScript code for applying id.

const $con = {};

$con['fun_(bool&int)'] = function ($_, $1) {

$2 = $1 || {};

$2.bool = false; $2.int = 0;

return $2;

};

Fig. 25. Simplified JavaScript code for con (_: Top) = false,0.

const $1 = {}; $1.int = 1;

const $2 = {}; $2.int = 2;

const $3 = {}; $3.int = $1.int + $2.int;

(a) Before optimization: 3 objects.

const $1 = 1;

const $2 = 2;

const $3 = $1 + $2;

(b) After optimization: 0 objects.

Fig. 26. Simplified JavaScript code for 1 + 2.

unnecessary in this case. As shown in Fig. 26b, we do not need to create any objects when compiling

1 + 2. Instead of {int �⇒ 1}, we can directly use 1 if it is not part of a merge. This is a significant

optimization for programs that heavily rely on arithmetic. In addition to integers, we also optimize

the compilation for floating-point numbers, boolean values, and strings in a similar way.
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The optimization becomes a bit more complicated when interacting with parametric polymor-

phism, as we cannot statically know the type of a polymorphic term. Therefore, to guarantee a

consistent runtime representation of primitive values, we also add runtime primitiveness checks

and perform the optimization to those polymorphic terms whose types are instantiated primitive.

For an artificial example, consider the following CP code:

idPartly A B (x: A&B): B = x;

idPartly @String @Int ("foo" , 48) --> 48

idPartly @String @(Int&Bool) ("foo" , 48 , true) --> 48 , true

We know that the return type of idPartly is B, but we cannot statically know if B is a primitive

type. We should do the optimization in the first application above but not in the second one. Such a

decision is made at run time by checking B’s primitiveness. By this means, we can make sure that

the runtime representation of primitive values is consistent and efficient.

6.5 Selected Rules for Destination-Passing Style
To help to understand the implementation of destination-passing style, we present the compilation

process in the form of type-directed rules. The full set of rules can be found in Appendix A.We select

a few representative ones here. Besides destination-passing style, the design of the compilation

rules is greatly influenced by the optimization that reduces object copying (discussed in Section 6.4).

We will revisit the examples in Fig. 23, Fig. 24, and Fig. 25 to show how the optimized code is

generated systematically.

In the compilation rules, we have three kinds of destinations:

• 𝑧 stands for a non-empty destination, where the context is a merge. We will store the current

result as a field in the destination object z.
• 𝑦? stands for an optional destination, where the context is a function body. Since the last

parameter of a compiled function can be undefined, we do not statically know if the destination

is present.

• nil stands for no destination, which means that the context is neither a function body nor a

merge.

An alternative approach that avoids the case of optional destinations is to compile each function

twice: one with a destination and the other without. This allows the appropriate version to be

chosen statically. We leave the exploration of this variant for future work.

Seven rules for type-directed compilation are selected in Fig. 27a. A rule (Γ; dst ⊢ e ⇔ A ⇝ J | z)
basically reads as: given a typing context Γ and a destination dst, the 𝐹+𝑖 term e is checked/inferred
to have type A and is compiled to variable z in JavaScript code J. That is, after running J, the
result is stored in the JavaScript variable z. Let us take the variable access in 𝐹+𝑖 as an example. We

perform case analysis on the destination: if the destination is present, we copy the contents of x to

z (J-Var); if the destination is absent, we directly return the variable x (J-VarNil); if the destination

is optional, we dynamically check the presence of y and copy the contents of x only if y is present

(J-VarOpt). Since the destination is set optional for the function body (J-Abs), J-VarOpt is used

instead of the other two if the function body is a variable access. This is how we get the optimized

code for an identity function in Fig. 23b. As for the function presented in Fig. 25, the body is a

merge of two literals. There is only one version of J-Merge, which assumes that a destination is

provided, so a bridge rule J-Opt is used to properly set the destination. Subsequently, J-Merge

delegates the compilation to the two subterms (e.g. J-Int) and concatenates the JavaScript code.

Concerning function application, we select three rules in Fig. 27b. A rule (Γ; dst ⊢ x : A • y :

B ⇝ J | z : C) basically reads as: given a typing context Γ and a destination dst, applying the

compiled function in x of type A to the compiled argument y of type B yields variable z of type
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Destinations dst ::= nil | y? | z

JavaScript code J ::=∅ | J1; J2 | code

Γ; dst ⊢ e ⇔ A ⇝ J | z (Type-directed compilation)

J-Var

x : A ∈ Γ

Γ; z ⊢ x ⇒ A ⇝
copy(z, x); | z

J-VarOpt

x : A ∈ Γ

Γ; y? ⊢ x ⇒ A ⇝
if (y) copy(y, x); | x

J-VarNil

x : A ∈ Γ

Γ;nil ⊢ x ⇒ A ⇝ ∅ | x

J-Abs

Γ, x : A; y? ⊢ e ⇐ B ⇝ J | y0
Γ; z ⊢ 𝜆x :A. e :B ⇒ A → B ⇝

z["func_|B|"] = (x, y) => { J; return y0; }; | z

J-Opt

Γ; z ⊢ e ⇔ A ⇝ J | z
Γ; y? ⊢ e ⇔ A ⇝

var z = y || {}; J; | z

J-Merge

Γ; z ⊢ e1 ⇒ A ⇝ J1 | z
Γ; z ⊢ e2 ⇒ B ⇝ J2 | z

Γ ⊢ A ∗ B
Γ; z ⊢ e1 , e2 ⇒ A&B ⇝ J1; J2 | z

J-Int

Γ; z ⊢ 𝑛 ⇒ Z ⇝ z.int = n; | z

(a) Type-directed compilation.

Γ; dst ⊢ x : A • y : B ⇝ J | z : C (Function application)

JA-ArrowEqiv

A ≒ C

Γ; z ⊢ x : A → B • y : C ⇝
x["func_|B|"](y, z); | z : B

JA-ArrowOpt

A ≒ C

Γ; z0? ⊢ x : A → B • y : C ⇝
var z = x["func_|B|"](y, z0); | z : B

JA-ArrowNil

A ≒ C

Γ;nil ⊢ x : A → B • y : C ⇝
var z = x["func_|B|"](y); | z : B

(b) Function application.

Fig. 27. Selected rules for destination-passing style.

C in JavaScript code J. All three rules deal with the simple cases where the parameter type is

equivalent to the argument type, so we do not need to insert any coercion for the argument. Again,

we perform case analysis on the destination (JA-ArrowEqiv, JA-ArrowNil, and JA-ArrowOpt).

This explains why we get different JavaScript code for the two function calls in Fig. 24.

6.6 Separate Compilation
Lastly, our implementation supports separate compilation. This is usually difficult to achieve in

a programming language with a high level of extensibility and modularity that can solve the

expression problem (CP’s solution is covered in Section 3.4). The difficulty of separate compilation
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CP

open

program.cp

dependency.lib

CP header

program.h

dependency.h

include

Fi
+

open

program.fiplus

dependency.fiplus

JavaScript

import

program.js

dependency.js

Fig. 28. A flowchart of separate compilation in CP.

-- example.cp

open strings;

type Rcd = { m: String; n: String };

mkA = trait [this: Rcd] ⇒ {

m = "foobar";

n = toUpperCase this.m;

};

-- example.cp.h

include "strings.lib.h";

type Rcd = { m: String; n: String };

term mkA : Trait<{ m: String }&{ n: String }

⇒ { m: String }&{ n: String }>;

Fig. 29. A CP file and its corresponding header file.

in the presence of modularity has been previously studied in the context of feature-oriented pro-
gramming [Apel and Kästner 2009; Prehofer 1997]. As identified by Kästner et al. [2011], modularity

can be divided into two categories: cohesion and information hiding. The cohesive approach often

employs source-to-source transformations, which require the whole source code to be available. As

a result, they achieve modularity at the cost of modular type checking and separate compilation.

Many existing feature-oriented tools, such as AHEAD [Batory et al. 2004], FeatureC++ [Apel et al.

2005], and FeatureHouse [Apel et al. 2013b], fall into this category. The second approach is based

on strong interfaces and information hiding. This notion of modularity is underrepresented in

feature-oriented software development, but it is emphasized in the community of programming

languages and is employed by gbeta [Ernst 2000] and CP.

Both gbeta and CP can solve the expression problem via family polymorphism [Ernst 2004]

without sacrificing separate compilation. However, separate compilation affects the performance of

attribute lookup in gbeta. Since an object in gbeta may have more mixin instances at run time

than what is statically known, and the mixin instances may occur in a different order, the offset

of an attribute cannot be determined statically. Especially when separate compilation is desired,

we cannot do whole program analysis to optimize attribute lookup for some specific inherited

classes. As a result, gbeta has to perform a linear search through super-mixins to look up inherited

attributes. In contrast, attribute lookup in CP, even with dynamic inheritance, is much more efficient,

and no linear search is needed.

ACM Trans. Program. Lang. Syst.



52 Yaozhu Sun, Xuejing Huang, and Bruno C. d. S. Oliveira

The flowchart in Fig. 28 gives an overview of the compilation process from CP all the way down

to JavaScript, which is almost a textbook example of separate compilation. Like most programming

languages, the compilation unit of CP is a file. One can refer to another file using open directives in

CP, which compile to JavaScript module import statements. To provide sufficient type information

for modular type checking, a CP file compiles to a JavaScript file as well as a CP header file. CP

header files are similar to .mli files in OCaml and consist of type definitions, type signatures for

terms, and references to other header files. See Fig. 29 for a slightly simplified example. Normally,

header files are automatically generated by the CP compiler, but users can also edit them to hide

some definitions that are supposed to be private. The compilation only depends on the file to be

compiled and the headers files of its dependencies. As a result, compiling a file does not require

recursively compiling its dependencies, and its dependents do not need recompilation as long as its

header file is not changed (though its implementations may have changed).

Between CP and JavaScript, there is a core calculus 𝐹+𝑖 [Bi et al. 2019; Fan et al. 2022]. Since our

implementation of CP is based on the elaboration semantics formalized by Zhang et al. [2021],

CP language constructs are first desugared into 𝐹+𝑖 terms, and then these 𝐹+𝑖 terms are compiled

into JavaScript code. Both sets of elaboration rules are syntax-directed and compositional, and the

elaboration contexts only include type information from header files in our implementation. That

is why CP code can be separately compiled with the help of header files.

7 Empirical Evaluation
In this section, we conduct an empirical evaluation of the CP compiler. We analyze the impact

of various optimizations in the CP compiler. Furthermore, we compare the efficiency of dynamic

inheritance in CP with that in handwritten JavaScript code. The key takeaway from our empir-

ical evaluation is that using a naive compilation scheme for merges can be orders of magnitude

slower than optimized code. Our optimizations lead to code that can be competitive with similar

handwritten JavaScript code. The benchmarks are available in the supplementary materials.

Experimental setup and benchmark programs. We performed experiments on a system featuring

an Apple M1 Pro chip and 16GB RAM. JavaScript code was executed using Node.js 20.12.2 LTS.

The outline of benchmark programs is presented in Table 1. The initial four benchmarks focus on

general-purpose computations, while the latter four are adapted from recent work on compositional

embeddings [Sun et al. 2022], showcasing CP’s novel features. Among them, chart is the biggest

program with around 300 lines of code. Challenges discussed in Section 3, including dynamic

inheritance and family polymorphism, are prominent in the latter four benchmarks.

7.1 Ablation Study on Optimizations
The coercive subtyping semantics of CP raises important questions about efficiency since coercions

have runtime costs and they are pervasively employed in generated code. There are essentially

three main concerns that need to be addressed in obtaining an efficient compilation scheme for CP:

• Efficient lookup. Since merge lookup is pervasive, it is important to use a runtime repre-

sentation for merges that enables efficient lookup.

• Efficient merging and copying. Since merging is frequent, it is important that the merging

process is efficient and minimizes the amount of copying involved in merging.

• Minimizing the cost of coercions. Since our subtyping is coercive, it is fundamental that

the cost of coercions is minimized. Furthermore, optimizations should avoid coercions when

possible.

In our work, we have addressed the above three points. Our representation of merges as type-

indexed records makes the cost of a merge lookup essentially the same as the cost of a JavaScript field
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Table 1. Outline of the benchmark programs.
†

fib Calculating Fibonacci numbers without memoization.

fact Some factorial functions multiplied together.

sieve Sieve of Eratosthenes, an algorithm for finding prime numbers.

nbody Numerical simulation of the 𝑛-body problem.

region An embedded DSL for geometric regions.

chart Generating SVG code for customizable charts.

fractal Generating SVG code for a simple fractal called the Sierpiński carpet.

minipedia Generating HTML code for a mini document with a computed table of contents.

†
Some computations in the benchmark programs are repeated several times for longer and more stable execution time.

lookup, which is very efficient. This provides a major source of improvement over a representation

with pairs, where lookup time can be linear. We believe that it is hard to do better in this dimension,

at least if the goal is to target JavaScript. For merging, we rely on JavaScript’s ability to copy

object fields. An important concern for merging is to avoid the creation of intermediate objects,

minimizing the amount of copying. The DPS optimization is particularly important for obtaining

efficient merging. Like lookup, we believe that the CP compiler also achieves efficient merging.

Finally, to mitigate coercions, we employ a hybrid model that combines inclusive and coercive

subtyping. We only insert coercions when necessary and try to eliminate redundant coercions as

much as possible. We have mentioned several optimizations in Section 6, two of which are avoiding

unnecessary coercions: one for equivalent types and the other for record projections.

All the implemented optimizations should improve the performance of our CP compiler in theory.

Here we select four representative ones to evaluate their impact in practice:

(1) Reducing intermediate objects using destination-passing style (DPS);

(2) Preventing primitive values from boxing/unboxing (NoBox);

(3) Eliminating coercions for subtyping between equivalent types (TyEquiv & CoElim);

(4) Avoiding the insertion of coercions for record projections (ProjOptim).

We conduct an ablation study on the four optimizations. Fig. 30b shows the execution time ratios

(slowdowns) to the optimized JavaScript code when removing each optimization. Fig. 30a lists

the original data for Fig. 30b in milliseconds. CP Compiler represents the most optimized version

of the CP compiler, including all the aforementioned optimizations. The remaining variants are

CP Compiler minus one optimization, including all other optimizations. To summarize the bench-

mark results, different optimizations show different degrees of speedup for different benchmarks,

but we believe that the coercion-related ones are especially important when (dynamic) inheritance

is concerned.

The first optimization (DPS) speeds up the execution of the latter five benchmarks by reducing the

number of intermediate objects and object concatenations. In contrast, the former three benchmarks

do not benefit from the optimization because they only perform arithmetic operations and no

objects are involved. The first benchmark (fib) even becomes a bit slower because the optimization

inserts extra checks into function bodies to test if destination objects are present. Overall, the

speedup ratios are 2.6× at most. This optimization clearly helps for programs involving objects and

merging, although the benefits of this optimization are smaller than optimizations on coercions. In
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fib fact sieve nbody region chart fractal minipedia

CP Compiler 2837 1433 1736 1704 1944 516 4578 45

w/o DPS 2451 1422 1728 4402 3806 1243 6861 60

w/o NoBox 66348 13369 4314 32716 2144 783 5249 53

w/o TyEquiv 2860 1425 1738 1722 2349 1229 5064 24080

w/o CoElim 6020 2832 1801 9851 2693 2803 6173 30192

w/o ProjOptim 2880 1438 1795 47505 28591 1117 7990 OOM
‡

(a) Execution time (ms) of the JavaScript code generated by variants of the CP compiler.
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(b) Execution time ratios (slowdowns) of different variants to the optimized JavaScript code.
‡

‡
The bar that exceeds the frame represents JavaScript heap out of memory (OOM) for minipedia w/o ProjOptim.

Fig. 30. Ablation study on optimizations for the CP compiler.

essence, intermediate objects are not the main bottleneck in the JavaScript code generated by the

CP compiler, although they still have a considerable cost for many programs.

The second optimization (NoBox) is important for primitive operations such as arithmetic, which

complements the first optimization. It speeds up all benchmarks since primitive operations are

inevitable in practical programs. It brings around 23× speedup for fib and around 19× speedup for

nbody because they involve a lot of arithmetic operations. Numbers do not need to be boxed/un-

boxed in the optimized JavaScript code, so the performance is improved significantly.

The analysis for the third optimization is split into two parts for a finer-grained analysis. We have

a version of the CP compiler that only removes coercions for syntactically equal types but does not
eliminate other coercions for equivalent types (w/o TyEquiv). The other version does not eliminate

redundant coercions at all (w/o CoElim). Some benchmarks (such as chart and minipedia) make

use of equivalent types a lot, hence their performance is already affected by removing TyEquiv.

After further removing CoElim, most benchmarks experience significant slowdowns (up to 671×
slower in the worst case for minipedia).

The last optimization (ProjOptim) targets coercions for record projections, so the benchmarks

that do not use records (such as fib, fact, and sieve) are not affected at all. Among the relevant

benchmarks, nbody becomes around 28× slower without this optimization. This is because the

masses, velocities, and coordinates of the bodies are all stored in records. Note that the JavaScript

code generated for minipedia runs out of memory, so there is no data in Fig. 30a, and the exception

is represented by a bar that exceeds the frame in Fig. 30b.

In conclusion, all optimizations work in practice. The elimination of redundant coercions has a

particularly significant impact on the performance. The representation of JavaScript objects (or
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extensible records in general) brings forth a class of equivalent types, whose terms share the same

shape. We can then avoid the coercions between these types but still obtain an equivalent object as

a result. This optimization has a significant impact but cannot be done in previous work [Dunfield

2014; Oliveira et al. 2016] because they use nested pairs as the elaboration target of merges. Since

pairs are order-sensitive, they require coercions that can be avoided with order-insensitive objects

(see also the discussion in Section 4.1). Together with the faster lookup by type indices in objects,

the JavaScript code generated by the CP compiler achieves reasonable performance.

7.2 Comparison with Handwritten JavaScript Code
Our focus in this paper is on the type-safe compilation of dynamic inheritance and the efficient

compilation of languages with merges. A first natural question to ask is how the new compilation

scheme compares against existing compilation schemes for merges. Unfortunately, such a direct

comparison is not feasible for a few different reasons. Firstly, the only other compiler for a language

with merges is Stardust by Dunfield [2014]. However, Stardust targets ML, instead of JavaScript.

Thus, a direct comparison of performance would not be possible. Furthermore, Stardust does not

support distributive subtyping and nested composition. Thus, most of our examples and case

studies cannot be encoded in Stardust. Nevertheless, in Section 4.1, we have highlighted some

advantages of using our record-based representation versus using pairs (which Stardust employs)

in the compilation of merges.

In spite of the above-mentioned difficulties of a direct comparison, it is still helpful to do an

elementary quantitative analysis with handwritten JavaScript code to assess the impact of the

coercive semantics of CP. Although we have worked hard to eliminate unnecessary coercions,

the JavaScript code generated by the CP compiler still includes plenty of coercions. In contrast,

handwritten JavaScript code is coercion-free, and subtyping in TypeScript has no cost. It would

be unrealistic to expect a stable performance that is competitive with JavaScript, especially since

our implementation is still a proof of concept for our compilation scheme. However, ideally, the

performance penalty imposed by coercions should not be too high.

A brief comparison is made based on the former four benchmarks, namely fib, fact, sieve, and

nbody (we will explain region
0
later). Fig. 31c shows the execution time ratios (slowdowns) of

the JavaScript code generated by the CP compiler compared to the handwritten JavaScript code,

and Fig. 31a lists the original data. They mainly demonstrate general-purpose computations. The

handwritten JavaScript code is transliterated from the corresponding CP code in order to make an

apples-to-apples comparison. It follows a functional programming style similar to CP and may not

be idiomatic in JavaScript. The performance of the JavaScript code generated by the CP compiler is

slightly slower than that of the handwritten code for fib, fact, and sieve. The biggest slowdown is

around 3× for nbody, partly because the manipulations of records and arrays in CP are less efficient

than in native JavaScript. Moreover, our treatment of let expressions is oversimplified. In CP,

let x = e1 in e2 is desugared into (\x → e2) e1, which is much slower than const statements

in JavaScript. In nbody, there are several nested lets in recursive functions, introducing significant

overhead.

The latter four benchmark programs make use of CP’s novel features, making transliteration

to JavaScript difficult. Nevertheless, we adapt the fifth benchmark (region) to make a comparison

between conceptually equivalent programs. To recap, the benchmark program is mainly an em-

bedded DSL for geometric regions [Hudak 1998]. For modular extension, the DSL is implemented

with techniques of family polymorphism, which are described in Section 2.4 for JavaScript and in

Section 3.4 for CP. Both implementations heavily rely on class/trait inheritance, so the performance

penalty of inheritance is well demonstrated in this benchmark. Furthermore, we change the number

of inheritance levels from 0 to 10 (region
𝑛
represents that the desired method is in the 𝑛-level
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fib fact sieve nbody region
0

JavaScript 2423 1427 1413 566 1513

CP 2837 1433 1736 1704 1137

(a) Execution time (ms) for five benchmarks.

Inheritance level 0 1 2 3 4 5 6 7 8 9 10

JavaScript 1513 1896 2002 2328 2333 2515 2724 2928 3260 3507 3670

TypeScript 1575 1944 2409 2755 3096 3614 4236 4606 4903 5186 5593

CP 1137 2184 2329 2465 2565 2708 2785 2873 2968 3069 3221

(b) Execution time (ms) for region
0..10

.
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Fig. 31. Comparison between JavaScript code generated by the CP compiler and handwritten code.

super-trait/-class) to see the trend of the performance penalty. In other words, region
0
is monolithic

code with a single trait/class and no inheritance hierarchy. At level one, we introduce a slightly

more modular version of region with one level of inheritance: there is a super-trait/-class and a

sub-trait/-class. Higher levels simply introduce more inheritance layers. The results are shown in

Fig. 31b and Fig. 31d.

Besides CP and JavaScript, a TypeScript version is also included for this comparison. The source

code is simply the JavaScript version plus type annotations. We use the official TypeScript compiler

to compile it to JavaScript and then use Node.js to execute the JavaScript code. The TypeScript

code has a different performance profile from the JavaScript code because the TypeScript compiler

by default (as of the current version 5.4) desugars classes into prototypes. This is due to the default

compilation target being ECMAScript 3 [ECMA 1999] for best compatibility, which does not support

classes. Newer versions of Node.js (based on ECMAScript 6 [ECMA 2015] or above) natively support

classes, so the handwritten JavaScript directly uses classes. To sum up, the difference between

JavaScript and TypeScript in the benchmark is mainly classes versus prototypes.

Without inheritance (region
0
), the JavaScript code generated by the CP compiler is faster than the

handwritten JavaScript and TypeScript code. This is because the technique of nested anonymous

classes is neither idiomatic nor efficient in JavaScript. In contrast, nested traits themselves do not

introduce extra runtime overhead in CP. However, when the desired method is one level up in

the inheritance hierarchy, the CP compiler generates around 2× slower code, compared to the

monolithic version, because coercions are inserted for nested trait composition. For the monolithic
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version, there are almost no coercions in the CP code. Then the performance penalty increases more

smoothly when the inheritance level is higher. The CP compiler regains its leading position when

the number of inheritance levels is higher than 6. In contrast, TypeScript has the steepest curve.

The desugared prototype-based code generated by the TypeScript compiler is the least efficient

among the three implementations.

In conclusion, the performance penalty of coercions brought by trait inheritance is not negligible

but increases more smoothly with the number of inheritance levels than in handwritten JavaScript.

This is partly due to the efficient lookup by type indices in extensible records (or, more specifically,

JavaScript objects). Looking up a deeply nested method in the inheritance hierarchy can be slow in

JavaScript, but this is not the case in CP.

8 Related Work
Compilation of inheritance. In his excellent survey on inheritance, Taivalsaari [1996] distinguishes

two strategies for implementing inheritance: delegation and concatenation. Most prototype-based

languages, such as Self [Ungar and Smith 1987] and JavaScript, implement inheritance via del-

egation, where an object contains a reference to its prototype (e.g. __proto__ in JavaScript), and

methods that are not found in the current object will be delegated to its ancestors in the prototype

chain. In contrast, CP implements inheritance via concatenation (a.k.a. merging throughout the

paper), where a trait is self-contained and itself contains all the methods of its ancestors. Although

some copying is involved, the concatenation strategy is more efficient than delegation in terms of

method lookup.

To improve the performance of method lookup, newer implementations of the Self language

cache all lookup results for a polymorphic call site in a polymorphic inline cache (PIC) [Hölzle et al.
1991]. The methods cached in a PIC will be inlined into the caller to further reduce the overhead of

method calls. Since a PIC is empty until a method is called for the first time, dynamic recompilation

is required to optimize the code at run time. Moreover, the presence of dynamic inheritance may

lead to a full method lookup in Self [Chambers 1992]. Modern JavaScript engines, such as V8 used

in Node.js, utilize similar PIC-based techniques to optimize method calls. Though the CP compiler

does not implement inlining at all, which is definitely a useful optimization, it is still efficient in

terms of method lookup, and dynamic inheritance never causes a slower lookup.
Typical compilers for mainstream class-based languages, such as C++ and Java, add a virtual

method table (vtable) [Driesen et al. 1995] to each object to avoid searching for methods in the

inheritance hierarchy at run time. A vtable is basically an array of function pointers, associating

each method name (and parameter types if overloaded) with its implementation. Similarly, CP

compiles an object to a type-indexed record, which also associates each method name and type

with the corresponding implementation, among other fields. What is more, CP allows for first-class

classes (traits) and dynamic inheritance, which are not supported by most mainstream languages.

This is one of the key differences of our work compared to other OOP language compilers.

Another significant difference from mainstream OOP languages is that our compilation of

inheritance is based on the denotational model by Cook and Palsberg [1989]. In this model, classes

(traits) are encoded as functions, and inheritance is essentiallymerging functions, which is illustrated

in Section 3.2. That is why the source language of the compilation scheme (𝜆+𝑖 ) does not contain
any notion of classes or objects. Such encodings are common in the literature on foundations for

statically typed OOP [Bruce 2002; Bruce et al. 1999; Pierce 2002], and they largely simplify the

formalization of compilation and its metatheory.

Multiple inheritance is a well-known troublemaker in OOP languages, bringing the diamond

problem and method conflicts, among other issues. Alternative notions like mixins [Bracha and
Cook 1990] and traits [Ducasse et al. 2006] are proposed to alleviate the issues. A core difference
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between mixins and traits is how they handle conflicts when the same method name occurs in

multiple ancestors. Mixins resolve conflicts implicitly by linearization (e.g. C3 linearization [Barrett

et al. 1996]). However, the implicit resolution of conflicts may conceal accidental conflicts and lead

to subtle bugs. Traits, on the other hand, require the programmer to resolve conflicts explicitly. CP

adopts the trait model and imposes the disjointness constraint on merging (and trait inheritance).

Note that the disjointness constraint does not only consider the method names but also takes into

account the types of the methods, so the methods with the same name but different return types are

considered disjoint and do not conflict with each other. By this means, CP tries to reach a balance

between safety and flexibility.

Dynamic inheritance and first-class classes. While various forms of multiple inheritance are well

studied and implemented in some popular languages, such as C++, Ruby, and Scala, dynamic

inheritance is more challenging and involved, especially in terms of static typing. In the literature

of OOP, dynamic inheritance is often discussed in a broader context of first-class classes [Strickland
et al. 2013], where inherited classes can be determined at run time, among other dynamic features.

There are only a few statically typed languages that support first-class classes. To the best of our

knowledge, they are gbeta [Ernst 2000], TypeScript [Microsoft 2012], Typed Racket [Takikawa

et al. 2012], Wyvern [Lee et al. 2015], and most recently, CP [Zhang et al. 2021]. As elaborated in

Section 2, the most popular one, TypeScript, has significant type-safety issues when dealing with

dynamic inheritance.

Typed Racket is gradually typed and uses row polymorphism to represent class types. Similarly

to the disjointness constraints in CP, there are constraints on row variables to express absence,

and thus the inexact superclass problem that TypeScript suffers from is resolved in Typed Racket.

However, the absence constraint on a row variable only includes the method name but not the type,

so the dynamically inherited class is more restricted than in CP. Moreover, Xie et al. [2020] formally

prove that CP’s disjoint polymorphism is more powerful than similar forms of row polymorphism.

Furthermore, unlike Typed Racket, CP can model virtual classes and family polymorphism.

Wyvern is a language for design-driven assurance, and Lee et al. [2015] explored a foundational

account of first-class classes based on tagging [Glew 1999]. Similarly to our formalization, they

give an elaboration semantics of an OOP language. However, their theory is very different from

ours, and they target a more sophisticated calculus with hierarchical tagging and dependent types.

In contrast, our target language is a standard record calculus. Furthermore, their calculus cannot

model multiple inheritance or family polymorphism, and their implementation is an interpreter

rather than a compiler.

The gbeta language is the most interesting one and is the closest to CP because it supports

dynamic multiple inheritance and family polymorphism. However, separate compilation was not

supported at the time when Ernst [2000] wrote his dissertation because of some technical issues

with the Mjølner BETA persistence support. If this factor is disregarded, separate compilation can

still be accomplished, but at the cost of efficient attribute lookup.
8
Since an object in gbeta may

have more mixin instances at run time than what is statically known, and the mixin instances may

occur in a different order, the offset of an attribute cannot be determined statically. As a result,

gbeta has to perform a linear search through super-mixins to look up inherited attributes. In

contrast, attribute lookup in CP, even with dynamic inheritance, is more efficient, and no linear

search is needed.

The notion of patterns in gbeta unifies classes and methods, and patterns can be composed using

the combination operator ‘&’, which is similar to the merge operator ‘,’ in CP. Though dynamic

8
In email communications, Erik Ernst, the author of gbeta, confirmed having an implementation with separate compilation

but linear-time lookup of attributes.
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multiple inheritance can be achieved using ‘&’, only a subset of dynamic combinations is safe,

where at least one of the classes being composed must be created by single inheritance [Ernst 2002].

Otherwise, the C3 linearization algorithm used by gbeta may fail at run time. In contrast, dynamic

inheritance via ‘,’ is completely type-safe, because CP utilizes disjointness to avoid conflicts, and no

linearization is needed. This difference has been summarized earlier as mixins versus traits. Some

other notable consequences of this difference are:

• ‘,’ is commutative, while ‘&’ is not;

• ‘,’ supports mutual dependencies between traits, while ‘&’ rejects such cycles.

Virtual classes and family polymorphism. Virtual classes [Madsen and Møller-Pedersen 1989],

similarly to virtual methods, are nested classes that can be overridden in subclasses. Virtual

classes enable family polymorphism [Ernst 2001], which can naturally solve the expression prob-

lem [Ernst 2004]. The idea of virtual classes was initially introduced in the BETA programming

language [Madsen et al. 1993] and later generalized in gbeta [Ernst 2000]. CaesarJ [Aracic et al.
2006], an aspect-oriented programming language based on Java, also supports virtual classes but

does not allow cross-family inheritance and dynamic inheritance. Newspeak [Bracha et al. 2010], a

descendant of Smalltalk, combines virtual classes and first-class modules (i.e. instances of top-level

classes) but is dynamically typed. The calculi Jx [Nystrom et al. 2004], J& [Nystrom et al. 2006],

vc [Ernst et al. 2006], Tribe [Clarke et al. 2007], and .FJ [Saito et al. 2008], just to name a few,

formalize virtual classes with static inheritance but do not support dynamic inheritance.

Zhang and Myers [2017] propose the Familia programming language that unites object-oriented

polymorphism and parametric polymorphism by unifying interfaces and type classes. In Familia,

a mechanism of family polymorphism based on nested inheritance, similarly to Jx [Nystrom et al.

2004], is also deployed. During compilation, a linkage is computed for every class, which consists of

a self-reference, a dispatch table, and the linkages of its nested classes, among others. At the heart

of the mechanism is further binding [Madsen et al. 1993]: rewiring self-references for nested classes.

Further binding is realized in Familia by linkage concatenation between families. This process

is similar to the nested trait composition in CP, but there is a significant distinction in terms of

separate compilation. CP only needs type information of the imported modules at compile time,

while Familia requires class linkages that contain some implementation details of the imported

modules (e.g. method definitions) and copy these details from superclasses’ linkages. In this sense,

with linkages, Familia supports some degree of separate compilation, but not to the same extent as

the CP compiler does. Moreover, since Familia does not support dynamic inheritance, their class

hierarchies are determined statically. In contrast, CP supports dynamic trait composition, which

brings extra flexibility.

More recently, Kravchuk-Kirilyuk et al. [2024] propose Persimmon, a functional programming

language that features extensible variant types and extensible pattern matching. CP also supports

them via compositional interfaces and method patterns. Persimmon additionally allows types to

be members of a family, relying on the support for relative path types [Saito et al. 2008] in their

core calculus. Internally, Persimmon makes use of linkages that are similar to those in Familia. An

important limitation of their current design is that modular type checking and separate compilation

are not supported for multi-file programs, while CP fully supports them.

Elaboration of intersection types and the merge operator. Dunfield [2014] shows that unrestricted
intersection types and a term-level merge operator [Reynolds 1997] can encode various features

like overloading and multi-field records, and they can be elaborated into product types and pairs.

However, her approach lacks the critical property of coherence, i.e. the property that ensures the

result of a merge is unambiguous. In the follow-up work on disjoint intersection types [Oliveira et al.
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2016], the merged components are required to be disjoint with each other to avoid the semantic

ambiguity. Alpuim et al. [2017] added parametric polymorphism to the calculus. Bi et al. [2018, 2019]

further enhanced the intersection subtyping with distributivity, enabling more novel features like

nested composition and family polymorphism. In other words, only Bi et al.’s 𝐹+𝑖 calculus fully covers

the topics mentioned in Section 3. All the aforementioned work employs elaboration semantics

with standard 𝜆-calculi serving as targets. They use nested pairs as the target of elaboration, and

consequently, the time complexity of extracting a component by type can degenerate to linear in

the worst case. In addition, extensible records require fewer coercions than nested pairs because

some different source terms compile to equivalent records. These differences from our CP compiler

have been discussed in detail in Section 4.1. In short, they do not consider more efficient runtime

representations or eliminating redundant coercions, nor do they have benchmarks to evaluate

performance. Instead, their focus is on proving the type safety and coherence of the elaboration.

Furthermore, none of the aforementioned work develops a language with separate compilation

units.

The compilation of merges in our work has similarities to the compilation of type-indexed
rows [Shields and Meijer 2001], where record labels are discarded and record fields are sorted by

their types. However, the work on type-indexed rows does not consider subtyping, which eliminates

many of the issues that we had to deal with. For instance, they do not need to apply coercions to

ensure that information statically hidden by subtyping is also hidden at run time.

Compilation of extensible records. Ohori [1995] investigates a polymorphic record calculus and

introduces an efficient type-directed compilation method for records. Following the type-inference

stage, records are converted into vectors with explicit indexing. However, his records are not exten-

sible, and his method has difficulties to handle subtyping. Subtyping for records frequently enables

field hiding and reordering, rendering it impossible to determine a label’s offset statically. Gaster

and Jones [1996] propose a compilation technique for polymorphic extensible records that utilizes

qualified types [Jones 1994]. During the compilation process to the target language, supplementary

parameters are introduced to determine suitable offsets. This approach is integrated into Hugs,

a well-known implementation of Haskell, as an extension. Their system is later generalized by

type-indexed rows [Shields and Meijer 2001]. In summary, subtyping and record concatenation

(or merges) pose significant challenges to the compilation of extensible records. Our work takes

pragmatic considerations into account, including targeting widely used dynamic languages such

as JavaScript. As a result, we rely on the primitive support of objects and object extension in our

target language and do not delve into low-level representations of extensible records, for which a

comprehensive summary can be found in the paper by Leijen [2005].

Compilation of feature-oriented programming. Feature-oriented programming (FOP) [Apel and

Kästner 2009; Prehofer 1997] is a programming paradigm that aims to modularize features in

software product lines [Apel et al. 2013a]. There is a debate on what modularity exactly means,

and Kästner et al. [2011] mention two notions of modularity: cohesion and information hiding. The
majority of FOP work [Apel et al. 2013b, 2005; Batory et al. 2004] focuses on the notion of cohe-

sion and basically does source-to-source transformations, which hinders modular type checking

and separate compilation. There is some other work, such as Jiazzi [McDirmid et al. 2001] and

Scala [Odersky and Zenger 2005], leveraging information hiding instead and supporting modular

type checking and separate compilation. However, FOP is usually achieved via verbose design

patterns or metaprogramming in those languages. For instance, some precursor work of composi-

tional programming, done in Scala, employs design patterns based on object algebras [Oliveira and

Cook 2012] to achieve FOP [Oliveira et al. 2013; Rendel et al. 2014]. Since merging is not directly

supported in Scala, specialized composition operators are required to simulate merges for different
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object algebra interfaces. The creation and use of those composition operators cause a significant

burden for developing programs. In contrast, CP natively supports merges, eliminating the need

for such specialized composition operators and supporting FOP more directly.

Delta-oriented programming (DOP) [Schaefer et al. 2010] is an extension of FOP, which features

delta modules that can add, remove, or modify classes. A feature module is a delta module without

the remove operation. DOP supports compositional type checking [Bettini et al. 2013] at the level

of source code. More recently, a core calculus for dynamic DOP is proposed by Damiani et al. [2018]

to support runtime variability [Hallsteinsen et al. 2008] and is proven to be type-safe. However,

dynamic DOP is not yet implemented, and its separation compilation is unexplored.

9 Conclusion
CP is unique in that it supports dynamic inheritance, multiple inheritance, and family polymorphism

all together in a type-safe manner. This paper proposes an efficient compilation scheme for CP,

which features modular type checking and separate compilation. Not only have we presented

formalized rules that capture the main ideas of compiling merges to type-indexed records, but we

also provide a concrete implementation that targets JavaScript. In addition, benchmarks are included

to evaluate our CP compiler empirically. The experimental results validate that our compilation

scheme and optimizations lead to reasonable efficiency of generated code. More importantly, the

type safety of our compilation scheme has been mechanically proven in Coq. We hope our work

will benefit future work on type-safe compilation for dynamic inheritance or family polymorphism.

Future work. An obvious direction for future research is to formalize the compilation of parametric

polymorphism. This endeavor would require significant effort, because not only will type variables

and disjoint quantification complicate the metatheory, but the target calculus also needs to support

first-class labels. A second direction is to prove coherence. While we have briefly sketched how a

proof of coherence of the elaboration could be done, by adapting ideas in previous work [Bi et al.

2018], we have not done this proof. Thus, completing this proof would be interesting, although

we believe that our focus on generating efficient coercions may add significant complexity to this

proof. A possibility here is to define a simplified elaboration semantics targeting a language with

records, but not aimed at optimizing coercions. This should be helpful for simplifying a coherence

proof. Another interesting result would be to give a direct semantics for 𝜆+𝑖 and show that the

elaborated terms in the target preserve the semantics of the source term.

In our elaboration rules, all top-like terms are treated as ⊤ and elaborated to an empty record

(see rules Ela-Top, Ela-TopAbs, and Ela-TopRcd). Moreover, the coercive subtyping rule S-Top

coerce a target term to an empty record if B is top-like in A <: B. As a result, side effects in top-like

terms are erased during elaboration, which is not desired in imperative languages. For example,

(𝜆𝑟 . 𝑟 := 1) : Ref Z → ⊤ is elaborated to {}, and the original function is erased. One potential

solution is not to erase the top-like terms during the elaboration. For example, we can elaborate

the previous expression to {|Ref Z → ⊤| �⇒ 𝜆𝑟 . 𝜖}, assuming 𝑟 := 1 is elaborated to 𝜖 . However,

this change breaks the current design of equivalent types because top-like terms can have different

representations now. Sun [2025] briefly discusses this issue in the section of future work.

Concerning implementation, our prototype of the CP compiler is not as fully fledged as existing

compilers for other functional languages. In addition, more optimizations should be done to improve

the performance of the generated JavaScript code, especially on coercions. For example, when

compiling an upcast (48 , true) : Int, we could use masks to hide the boolean part instead of deleting

that field. While this paper focuses the empirical evaluation on the performance of the generated

JavaScript code, the compilation time is also an important factor in practice. For instance, type

splitting (rule S-Split) used in our subtyping algorithm is not efficient enough and can lead to a
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significant slowdown when complex intersection types are involved. It is worthwhile investigating

a more efficient algorithm for distributive subtyping with intersection types in the future.

A Compilation Scheme from Fi+ to JavaScript
The syntax of 𝐹+𝑖 is defined below, where the main differences from 𝜆+𝑖 are the addition of parametric

polymorphism and fixpoint expressions:

Types 𝐴, 𝐵 ::=⊤ | ⊥ | Z | X | A → B | ∀X ∗A. B | {ℓ : A} | A&B

Expressions 𝑒 ::= {} | 𝑛 | x | fix x :A. e | 𝜆x :A. e :B | e1 e2 | ΛX ∗A. e :B | e A | {ℓ = e} | e.ℓ | e1 , e2 | e : A

The compilation scheme we describe here directly generates JavaScript code instead of 𝜆𝑟 terms,

which is closer to the actual implementation. We denote the generated JavaScript code by J , which
can be empty (∅), concatenation of two pieces of code (J1; J2), or some predefined code that is

listed in Fig. 32. There are some notations for type indices, which are actually implemented as

strings in JavaScript (as discussed in Section 4.5). Destinations [Shaikhha et al. 2017] also play an

important role in the compilation scheme, being part of the rules for type-directed compilation and

distributive application. The key idea of destinations has been elaborated in Section 6.5.

JavaScript code J ::=∅ | J1; J2 | code

Type indices 𝑇 ::= Z | −→T | T ∀ | {ℓ : T } | T1 & T2
Destinations dst ::= nil | y? | z

A.1 Type-Directed Compilation
Similarly to the elaboration in Section 5, the compilation process is type-directed. Besides the

typing context Γ, there is also a destination variable dst that guides the code generation. A rule

basically reads as: given a typing context Γ and a destination dst, the 𝐹+𝑖 term e is checked/inferred
to have type A and is compiled to variable z in JavaScript code J . That is, after running J , the result
is stored in the JavaScript variable z.

Rules J-Int and J-Var have three variants for different destinations, while rules J-App and J-TApp

only have one version each but delegate to three variants of application for different destinations,

which helps to generate more optimized JavaScript code. Examples illustrating variants of rule J-Var

and rule JA-ArrowEqiv (via rule J-App) has been explained in Section 6.5. Rules J-IntOpt and

J-IntNil are designed for the optimization of boxing/unboxing (see Section 6.4). Other rules assume

that the destination is present and generate code accordingly. Rule J-Nil serves as the bridge from

empty destinations to non-empty ones, while rule J-Opt is for optional ones.

Γ; dst ⊢ e ⇔ A ⇝ J | z (Type-directed compilation)

J-Nil

Γ; z ⊢ e ⇔ A ⇝ J | z
Γ;nil ⊢ e ⇔ A ⇝ code | z

J-Opt

Γ; z ⊢ e ⇔ A ⇝ J | z
Γ; y? ⊢ e ⇔ A ⇝ code | z

J-Top

Γ; z ⊢ {} ⇒ ⊤ ⇝ ∅ | z

J-Int

T = |Z|
Γ; z ⊢ 𝑛 ⇒ Z ⇝ code | z

J-IntOpt

T = |Z|
Γ; y? ⊢ 𝑛 ⇒ Z ⇝ code | z

J-IntNil

Γ;nil ⊢ 𝑛 ⇒ Z ⇝ code | z

J-Var

x : A ∈ Γ

Γ; z ⊢ x ⇒ A ⇝ code | z

J-VarOpt

x : A ∈ Γ

Γ; y? ⊢ x ⇒ A ⇝ code | x

J-VarNil

x : A ∈ Γ

Γ;nil ⊢ x ⇒ A ⇝ ∅ | x
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/* J-Nil */

var z = {};

J;

/* J-Opt */

var z = y || {};

J;

/* J-Int */

z[T] = n;

/* J-IntOpt */

var z = n;

if (y) y[T] = n;

/* J-IntNil */

var z = n;

/* J-Var */

copy(z, x);

/* J-VarOpt */

if (y) copy(y, x);

/* J-Fix */

var x = z;

J;

/* J-Abs */

z[T] = (x, y) ⇒ {

J; return y0;

};

/* J-TAbs */

z[T] = (X, y) ⇒ {

J; return y0;

};

/* J-Rcd */

z.__defineGetter__(T, () ⇒ {

J;

delete this[T];
return this[T] = y;

});

/* J-Def */

export var x = {};

J1; J2;

/* JA-Nil */

var z = {};

J;

/* JA-Opt */

var z = y || {};

J;

/* JA-Arrow */

var y0 = {};

J1; J2;

/* JA-ArrowEquiv */

x[T](y, z);

/* JA-ArrowOpt */

var z = x[T](y, z0);

/* JA-ArrowNil */

var z = x[T](y);

/* JA-All */

x[T](Ts, z);

/* JA-AllOpt */

var z = x[T](Ts, y);

/* JA-All */

var z = x[T](Ts);

/* JP-RcdEq */

var z = x[T];

/* JS0-Int */

J;

y = y[T];

/* JS0-Var */

J;

if (primitive(X)) y = y[T];

/* JS-Equiv */

copy(y, x);

/* JS-Bot */

y[T] = null;

/* JS-Int */

y[T] = x;

/* JS-IntAnd */

y[T] = x[T];

/* JS-Var */

copy(y, x);

/* JS-Arrow */

y[T2] = (x1, y2) ⇒ {

var y1 = {}; J1;

var x2 = x[T1](y1);

y2 = y2 || {};

J2; return y2;

};

/* JS-All */

y[T2] = (X, y0) ⇒ {

var x0 = x[T1](X);

y0 = y0 || {};

J; return y0;

};

/* JS-Rcd */

y.__defineGetter__(T2, () ⇒ {

var x0 = x[T1];

var y0 = {}; J;

delete this[T];
return this[T] = y0;

});

/* JS-Split */

var y1 = {}; // if y1 != z

var y2 = {}; // if y2 != z

J1; J2; J3;

/* JM-Arrow */

z[T] = (p, y) ⇒ {

y = y || {};

var y1 = {}; // if y1 != y

var y2 = {}; // if y2 != y

x1[T1](p, y1);

x2[T2](p, y2);

J; return y;

};

/* JM-All */

z[T] = (X, y) ⇒ {

y = y || {};

var y1 = {}; // if y1 != y

var y2 = {}; // if y2 != y

x1[T1](X, y1);

x2[T2](X, y2);

J; return y;

};

/* JM-Rcd */

z.__defineGetter__(T, () ⇒ {

var y = {};

var y1 = {}; // if y1 != y

var y2 = {}; // if y2 != y

copy(y1, x1[T1]);

copy(y2, x2[T2]);

J;

delete this[T];
return this[T] = y;

});

Fig. 32. Predefined JavaScript code.
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J-Fix

Γ, x : A; z ⊢ e ⇐ A ⇝ J | z
Γ; z ⊢ fix x :A. e ⇒ A ⇝ code | z

J-TopAbs

⌉B⌈
Γ; z ⊢ 𝜆x :A. e :B ⇒ A → B ⇝ ∅ | z

J-Abs

T =
−→
|B|

Γ, x : A; y? ⊢ e ⇐ B ⇝ J | y0
Γ; z ⊢ 𝜆x :A. e :B ⇒ A → B ⇝ code | z

J-App

Γ;nil ⊢ e1 ⇒ A ⇝ J1 | x
Γ;nil ⊢ e2 ⇒ B ⇝ J2 | y

Γ; dst ⊢ x : A • y : B ⇝ J3 | z : C
Γ; dst ⊢ e1 e2 ⇒ C ⇝ J1; J2; J3 | z

J-TopTAbs

⌉B⌈
Γ; z ⊢ ΛX ∗A. e :B ⇒ ∀X ∗A. B ⇝ ∅ | z

J-TAbs

T = |B|∀
Γ,X ∗ A; y? ⊢ e ⇐ B ⇝ J2 | y0

Γ; z ⊢ ΛX ∗A. e :B ⇒ ∀X ∗A. B ⇝ code | z

J-TApp

Γ;nil ⊢ e ⇒ B ⇝ J1 | y
Γ; dst ⊢ y : B • A ⇝ J2 | z : C
Γ; dst ⊢ e A ⇒ C ⇝ J1; J2 | z

J-TopRcd

Γ ⊢ e ⇒ A ⌉A⌈
Γ; z ⊢ {ℓ = e} ⇒ {ℓ : A} ⇝ ∅ | z

J-Rcd

T = {ℓ : |A|}
Γ;nil ⊢ e ⇒ A ⇝ J | y

Γ; z ⊢ {ℓ = e} ⇒ {ℓ : A} ⇝ code | z

J-Proj

Γ;nil ⊢ e ⇒ A ⇝ J1 | y
y : A • {ℓ} ⇝ J2 | z : B

Γ; z ⊢ e.ℓ ⇒ B ⇝ J1; J2 | z

J-Merge

Γ; z ⊢ e1 ⇒ A ⇝ J1 | z
Γ; z ⊢ e2 ⇒ B ⇝ J2 | z

Γ ⊢ A ∗ B
Γ; z ⊢ e1 , e2 ⇒ A&B ⇝ J1; J2 | z

J-Anno

Γ; dst ⊢ e ⇐ A ⇝ J | z
Γ; dst ⊢ e : A ⇒ A ⇝ J | z

J-Def

Γ; x ⊢ e1 ⇒ A ⇝ J1 | x
Γ, x : A; z ⊢ e2 ⇒ B ⇝ J2 | z

Γ; z ⊢ x = 𝑒1; e2 ⇒ B ⇝ code | z

J-Sub

Γ;nil ⊢ e ⇒ A ⇝ J1 | x
x : A <: y : B ⇝ J2

Γ; y ⊢ e ⇐ B ⇝ J1; J2 | y

J-SubEqiv

A ≒ B
Γ; dst ⊢ e ⇒ A ⇝ J | z
Γ; dst ⊢ e ⇐ B ⇝ J | z

A.2 Distributive Application and Projection
We have mentioned that function applications (and record projections) have to be specially handled

because of distributive subtyping in 𝐹+𝑖 . To put it simply, we need to additionally consider the cases

where functions (and records) have intersection types or top-like types. Similarly to previous rules,

destinations also guide the code generation. A rule for function applications basically reads as:

given a typing context Γ and a destination dst, applying the compiled function in x of type A to the

compiled argument 𝑝 yields variable z of type B in JavaScript code J . Depending on whether the

function is 𝜆- or Λ-bound, the argument 𝑝 can be either a value (y : C) or a type (C).
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Γ; dst ⊢ x : A • p ⇝ J | z : B (Distributive application)

JA-Nil

Γ; z ⊢ x : A • p ⇝ J | z : B
Γ;nil ⊢ x : A • p ⇝ code | z : B

JA-Opt

Γ; z ⊢ x : A • p ⇝ J | z : B
Γ; y? ⊢ x : A • p ⇝ code | z : B

JA-Top

⌉A⌈
Γ; z ⊢ x : A • p ⇝ ∅ | z : ⊤

JA-Arrow

T =
−→
|B|

y : C <: y0 : A ⇝ J1
Γ; dst ⊢ x : A → B • y0 : A ⇝ J2 | z : B
Γ; dst ⊢ x : A → B • y : C ⇝ code | z : B

JA-ArrowEqiv

A ≒ C T =
−→
|B|

Γ; z ⊢ x : A → B • y : C ⇝ code | z : B

JA-ArrowOpt

A ≒ C T =
−→
|B|

Γ; z0? ⊢ x : A → B • y : C ⇝ code | z : B

JA-ArrowNil

A ≒ C T =
−→
|B|

Γ;nil ⊢ x : A → B • y : C ⇝ code | z : B

JA-All

Γ ⊢ A ∗ C
T = |B|∀ Ts = itoa | C |

Γ; z ⊢ x : ∀X ∗A. B • C ⇝ code | z : B[X ↦→ C]

JA-AllOpt

Γ ⊢ A ∗ C
T = |B|∀ Ts = itoa | C |

Γ; y? ⊢ x : ∀X ∗A. B • C ⇝ code | z : B[X ↦→ C]

JA-AllNil

Γ ⊢ A ∗ C
T = |B|∀ Ts = itoa | C |

Γ;nil ⊢ x : ∀X ∗A. B • C ⇝ code | z : B[X ↦→ C]

JA-And

Γ; z ⊢ x : A • p ⇝ J1 | z : A′

Γ; z ⊢ x : B • p ⇝ J2 | z : B′

Γ; z ⊢ x : A&B • p ⇝ J1; J2 | z : A′
&B′

As explained in Section 6.4, the rules for record projections are separated to reduce the number of

coercions and improve the performance of generated JavaScript code, although they were combined

with the rules for function applications in the latest formalization of 𝐹+𝑖 by Fan et al. [2022]. A rule

for record projections basically reads as: projecting the compiled records in x of type A by label ℓ

yields variable z of type B in JavaScript code J .

x : A • {ℓ} ⇝ J | z : B (Distributive projection)

JP-Top

⌉A⌈
x : A • {ℓ} ⇝ ∅ | z : ⊤

JP-RcdEq

T = {ℓ : |A|}
x : {ℓ : A} • {ℓ} ⇝ code | z : A

JP-RcdNeq

ℓ1 ≠ ℓ2 T = {ℓ : |A|}
x : {ℓ1 : A} • {ℓ2} ⇝ ∅ | z : ⊤

JP-And

x : A • {ℓ} ⇝ J1 | z : A′

x : B • {ℓ} ⇝ J2 | z : B′

x : A&B • {ℓ} ⇝ J1; J2 | z : A′
&B′

A.3 Coercive Subtyping
In rule J-Sub, we check an expression of type 𝐴 against its supertype 𝐵. Since the two types may

correspond to compiled objects of different shapes, a coercion has to be inserted for each subtyping

check. Such a form of subtyping is called coercive subtyping [Luo et al. 2013], in contrast to inclusive
subtyping. A rule for coercive subtyping basically reads as: to upcast a compiled object x of type A
to a compiled object y of type B, we need to insert a coercion in JavaScript code J . The umbrella

rule has three variants because of the optimization of boxing/unboxing (see Section 6.4).
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x : A <: y : B ⇝ J (Coercive subtyping)

JS0-Sub

x : A <:+ y : B ⇝ J

x : A <: y : B ⇝ J

JS0-Int

T = |Z|
x : A <:+ y : Z ⇝ J

x : A <: y : Z ⇝ code

JS0-Var

T = |X |
x : A <:+ y : X ⇝ J

x : A <: y : X ⇝ code

As explained in Section 6.4, we add an extra flag to help optimize coercions for subtyping between

equivalent types: <:+ indicates that the optimization rule JS-Eqiv can apply, while <:− not.

x : A <:± y : B ⇝ J (Coercive subtyping)

JS-Eqiv

A ≒ B

x : A <:+ y : B ⇝ code

JS-Top

⌉B⌈
x : A <:± y : B ⇝ ∅

JS-Bot

T = |A|
x : ⊥ <:± y : A ⇝ code

JS-Int

x : Z <:+ y : Z ⇝ code

JS-IntAnd

T = |Z|
x : Z <:− y : Z ⇝ code

JS-Var

x : X <:± y : X ⇝ code

JS-Arrow

T1 =
−−→
|A2 |

T2 =
−−→
|B2 | Ts = itoa | A1 |

x1 : B1 <: y1 : A1 ⇝ J1
x2 : A2 <: y2 : B2 ⇝ J2

x : A1 → A2 <:
± y : B1 → B2 ⇝ code

JS-All

T1 = |A2 |∀
T2 = |B2 |∀ B1 <: A1

x0 : A2 <: y0 : B2 ⇝ J

x : ∀X ∗A1 . A2 <:
± y : ∀X ∗B1 . B2 ⇝ code

JS-Rcd

T1 = {ℓ : |A|}
T2 = {ℓ : |B|}

x0 : A <: y0 : B ⇝ J

x : {ℓ : A} <:± y : {ℓ : B} ⇝ code

JS-Split

B1 ◁ B ▷ B2
y1 : B1 ▷ z : B ◁ y2 : B2 ⇝ J3

x : A <:± y1 : B1 ⇝ J1
x : A <:± y2 : B2 ⇝ J2
x : A <:± z : B ⇝ code

JS-AndL

x : A <:− y : C ⇝ J

x : A&B <:± y : C ⇝ J

JS-AndR

x : B <:− y : C ⇝ J

x : A&B <:± y : C ⇝ J

There are some auxiliary rules called coercive merging for rule JS-Split. These rules mean that if

the splitting relation A ◁ C ▷ B holds, we can merge the compiled objects x of type A and y of

type B back into a single object z of type C in JavaScript code J . Such merging is necessary after

splitting the supertype distributively. For example, consider the following derivation of subtyping:

⊤ → Int ◁ ⊤ → Int&Bool ▷ ⊤ → Bool
⊤ → Int& String&Bool <: ⊤ → Int ⊤ → Int& String&Bool <: ⊤ → Bool

⊤ → Int& String&Bool <: ⊤ → Int&Bool

After splitting, the compiled object would have two fields with labels "fun_int" and "fun_bool",

but we expect only one field with label "fun_(int&bool)". Rule JM-Arrow handles this case and

merge the two fields back into one.

The notation may be misleading, but note that here only the variable name z is given (i.e. input)

while variable names x and y are generated by the rules (i.e. output). This is because rule JM-And
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reuses the variable name z to also serve as x and y, which makes the caller perform more efficient

in-place updates. Not to make it more confusing but we have to emphasize that the discussion

is only about the variable name rather than the contents of the variable. Having a closer look at

rule JS-Split will help to better understand our design. Below the judgment of coercive merging,

the generated variable names (y1 and y2 in the case) are used to generate the coercions (in J1 and
J2). The coercions are actually executed before the coercive merging (in J3) in generated JavaScript.

To avoid y1 and y2 from being initialized more than once, some extra checks are performed when

generating JavaScript code for rules JS-Split, JM-Arrow, JM-All, and JM-Rcd.

x : A ▷ z : C ◁ y : B ⇝ J (Coercive merging)

JM-And

z : A ▷ z : A&B ◁ z : B ⇝ ∅

JM-Arrow

T =
−→
|B|

T1 =
−−→
|B1 | T2 =

−−→
|B2 |

y1 : B1 ▷ y : B ◁ y2 : B2 ⇝ J

x1 : A → B1 ▷ z : A → B ◁ x2 : A → B2 ⇝ code

JM-All

T = |B|∀
T1 = |B1 |∀ T2 = |B2 |∀

y1 : B1 ▷ y : B ◁ y2 : B2 ⇝ J

x1 : ∀X ∗A. B1 ▷ z : ∀X ∗A. B ◁ x2 : ∀X ∗A. B2 ⇝ code

JM-Rcd

T = {ℓ : |A|}
T1 = {ℓ : |A1 |}
T2 = {ℓ : |A2 |}

y1 : A1 ▷ y : A ◁ y2 : A2 ⇝ J

x1 : {ℓ : A1} ▷ z : {ℓ : A} ◁ x2 : {ℓ : A2} ⇝ code
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