
Type-Safe Compilation of
Dynamic Inheritance

via Merging
Yaozhu Sun, Xuejing Huang, Bruno C. d. S. Oliveira

18 October 2025

Dynamic Inheritance
in JavaScript

function Mixin(Base) {
 return class extends Base {
 m() { return 48; }
 };
}

Dynamic inheritance

Class as a parameter

Mixin
Pattern

2

type Constructor = new (...args: any[]) => {};

Dynamic Inheritance
in TypeScript

3

function Mixin<TBase extends Constructor>(Base: TBase) {
 return class extends Base {
 m(): number { return 48; }
 };
}

This type represents an empty class.

If m() exists in Base, that one will be
overridden by the definition here.

Unsafe Overriding
in TypeScript

4

function Mixin<TBase extends Constructor>(Base: TBase) {
 return class extends Base {
 m(): number { return 48; }
 };
}
class A {
 m(): string { return "foobar"; }
 n(): string { return this.m().toUpperCase(); }
}

We use A as Base.

This m() overrides that in class A.

var B = Mixin(A);
(new B).n() // Runtime Error!

Unsafe Overriding
in TypeScript

5

function Mixin<TBase extends Constructor>(Base: TBase) {
 return class extends Base {
 m(): number { return 48; }
 };
} Here m() is expected to return a string,

but the overridden one returns a number.

We use A as Base.

This m() overrides that in class A.

Type unsafe!

class A {
 m(): string { return "foobar"; }
 n(): string { return this.m().toUpperCase(); }
}
var B = Mixin(A);
(new B).n() // Runtime Error!

Overloading vs Merging

• Implicit overriding is dangerous,
both for type safety and semantics (e.g. fragile base class problem).

• We advocate a trait model with merging, which

‣ keeps both behaviors if there is no conflict, and

‣ requires explicit resolution if there are conflicts.

6

Type-Safe Merging
in CP

7

mixin (TBase * { m: Int }) (base: Trait<TBase>) =
 trait [this: TBase] inherits base => { m = 48 };

mkA = trait [this: { m: String; n: String }] => {
 m = "foobar";
 n = toUpperCase this.m;
};

o = new mixin @{ m: String; n: String } mkA;
-- { m = "foobar"; n = "FOOBAR"; m = 48 }

Dynamic inheritance (via merging)

The two “m” fields coexist because
they have disjoint types (String＊Int).

Unambiguous Merging
in CP

8

mixin (TBase * { m: String }) (base: Trait<TBase>) =
 trait [this: TBase] inherits base => { m = "φουμπαρ" };

mkA = trait [this: { m: String; n: String }] => {
 m = "foobar";
 n = toUpperCase this.m;
};

o = new mixin @{ m: String; n: String } mkA;
-- Type Error!

We express absence by disjointness!

The two “m” fields conflict because
they have non-disjoint type (String＊String).

Why Merging Matters?
Solving the Expression Problem in CPExpression

Operation
9

type LitSig<Exp> = {
 Lit : Int -> Exp
}

type AddSig<Exp> = {
 Add : Exp -> Exp
 -> Exp
}

type Eval = { eval : Int } type Print = { print : String }

evalLit = trait implements LitSig<Eval> => {
 (Lit n).eval = n
}

evalAdd = trait implements AddSig<Eval> => {
 (Add l r).eval = l.eval + r.eval
}

printLit = trait implements LitSig<Print> => {
 (Lit n).print = toString n
}

printAdd = trait
 implements AddSig<Eval => Print> => {
 (Add l r).print = if l.eval == 0 then r.print
 else if r.eval == 0 then l.print
 else l.print ++ " + " ++ r.print
}

Dependencies

Compiling Merges
Previous Work vs Our Scheme

10

evalLit

printLit

pair

evalAdd

pair

pair

printAdd

{ LitSig<Eval> |=> evalLit

; LitSig<Print> |=> printLit

; AddSig<Eval> |=> evalAdd

; AddSig<Print> |=> printAdd

}

their types
are disjoint

their indices
never conflict

merged = evalLit , printLit , evalAdd , printAdd

lookup is slow!

11

printLit

evalAdd

pair

printAdd

pair

pair

evalLit

{ LitSig<Print> |=> printLit

; AddSig<Eval> |=> evalAdd

; AddSig<Print> |=> printAdd

; LitSig<Eval> |=> evalLit

}

merged = printLit , evalAdd , printAdd , evalLit

Order-Sensitivity

different pairs!

equivalent
records

Key Ideas

• Compiling to extensible records (with type indices as labels):

‣ dynamic merge operator runtime record concatenation

‣ coercion to supertype record filtering or reconstruction

• Coercions between equivalent types can be avoided:

‣ top-like types are all equivalent (empty records)

‣ intersection types are equivalent up to permutation, deduplication, and
top-like type removal (records are unordered and labels are unique)

⇝

⇝

12

54 Yaozhu Sun, Xuejing Huang, and Bruno C. d. S. Oliveira

fib fact sieve nbody region chart fractal minipedia

CP Compiler 2837 1433 1736 1704 1944 516 4578 45
w/o DPS 2451 1422 1728 4402 3806 1243 6861 60

w/o NoBox 66348 13369 4314 32716 2144 783 5249 53
w/o TyEquiv 2860 1425 1738 1722 2349 1229 5064 24080
w/o CoElim 6020 2832 1801 9851 2693 2803 6173 30192

w/o ProjOptim 2880 1438 1795 47505 28591 1117 7990 OOM‡

(a) Execution time (ms) of the JavaScript code generated by variants of the CP compiler.

1

10

100

1000

fib fact sieve nbody region chart fractal minipedia

CP Compiler
w/o DPS

w/o NoBox
w/o TyEquiv
w/o CoElim

w/o ProjOptim

Ex
ec
ut
io
n
ti
m
e
ra
ti
o
(s
lo
w
do

w
n)

(b) Execution time ratios (slowdowns) of di!erent variants to the optimized JavaScript code.‡
‡ The bar that exceeds the frame represents JavaScript heap out of memory (OOM) for minipedia w/o ProjOptim.

Fig. 30. Ablation study on optimizations for the CP compiler.

essence, intermediate objects are not the main bottleneck in the JavaScript code generated by the
CP compiler, although they still have a considerable cost for many programs.

The second optimization (NoBox) is important for primitive operations such as arithmetic, which
complements the !rst optimization. It speeds up all benchmarks since primitive operations are
inevitable in practical programs. It brings around 23→ speedup for fib and around 19→ speedup for
nbody because they involve a lot of arithmetic operations. Numbers do not need to be boxed/un-
boxed in the optimized JavaScript code, so the performance is improved signi!cantly.

The analysis for the third optimization is split into two parts for a !ner-grained analysis. We have
a version of the CP compiler that only removes coercions for syntactically equal types but does not
eliminate other coercions for equivalent types (w/o TyEquiv). The other version does not eliminate
redundant coercions at all (w/o CoElim). Some benchmarks (such as chart and minipedia) make
use of equivalent types a lot, hence their performance is already a"ected by removing TyEquiv.
After further removing CoElim, most benchmarks experience signi!cant slowdowns (up to 671→
slower in the worst case for minipedia).
The last optimization (ProjOptim) targets coercions for record projections, so the benchmarks

that do not use records (such as fib, fact, and sieve) are not a"ected at all. Among the relevant
benchmarks, nbody becomes around 28→ slower without this optimization. This is because the
masses, velocities, and coordinates of the bodies are all stored in records. Note that the JavaScript
code generated for minipedia runs out of memory, so there is no data in Fig. 30a, and the exception
is represented by a bar that exceeds the frame in Fig. 30b.

In conclusion, all optimizations work in practice. The elimination of redundant coercions has a
particularly signi!cant impact on the performance. The representation of JavaScript objects (or

ACM Trans. Program. Lang. Syst.

56 Yaozhu Sun, Xuejing Huang, and Bruno C. d. S. Oliveira

fib fact sieve nbody region0

JavaScript 2423 1427 1413 566 1513
CP 2837 1433 1736 1704 1137

(a) Execution time (ms) for five benchmarks.

Inheritance level 0 1 2 3 4 5 6 7 8 9 10

JavaScript 1513 1896 2002 2328 2333 2515 2724 2928 3260 3507 3670
TypeScript 1575 1944 2409 2755 3096 3614 4236 4606 4903 5186 5593

CP 1137 2184 2329 2465 2565 2708 2785 2873 2968 3069 3221

(b) Execution time (ms) for region0..10.

0.5

1

2

3

4

5

fib fact sieve nbody region⁰

JavaScript
CP

Ex
ec
ut
io
n
ti
m
e
ra
ti
o
(s
lo
w
do

w
n)

(c) Bar chart for five benchmarks. (d) Line chart for region0..10.

Fig. 31. Comparison between JavaScript code generated by the CP compiler and handwri!en code.

super-trait/-class) to see the trend of the performance penalty. In other words, region0 is monolithic
code with a single trait/class and no inheritance hierarchy. At level one, we introduce a slightly
more modular version of region with one level of inheritance: there is a super-trait/-class and a
sub-trait/-class. Higher levels simply introduce more inheritance layers. The results are shown in
Fig. 31b and Fig. 31d.

Besides CP and JavaScript, a TypeScript version is also included for this comparison. The source
code is simply the JavaScript version plus type annotations. We use the o!cial TypeScript compiler
to compile it to JavaScript and then use Node.js to execute the JavaScript code. The TypeScript
code has a di"erent performance pro#le from the JavaScript code because the TypeScript compiler
by default (as of the current version 5.4) desugars classes into prototypes. This is due to the default
compilation target being ECMAScript 3 [ECMA 1999] for best compatibility, which does not support
classes. Newer versions of Node.js (based on ECMAScript 6 [ECMA 2015] or above) natively support
classes, so the handwritten JavaScript directly uses classes. To sum up, the di"erence between
JavaScript and TypeScript in the benchmark is mainly classes versus prototypes.

Without inheritance (region0), the JavaScript code generated by the CP compiler is faster than the
handwritten JavaScript and TypeScript code. This is because the technique of nested anonymous
classes is neither idiomatic nor e!cient in JavaScript. In contrast, nested traits themselves do not
introduce extra runtime overhead in CP. However, when the desired method is one level up in
the inheritance hierarchy, the CP compiler generates around 2→ slower code, compared to the
monolithic version, because coercions are inserted for nested trait composition. For the monolithic

ACM Trans. Program. Lang. Syst.

56 Yaozhu Sun, Xuejing Huang, and Bruno C. d. S. Oliveira

fib fact sieve nbody region0

JavaScript 2423 1427 1413 566 1513
CP 2837 1433 1736 1704 1137

(a) Execution time (ms) for five benchmarks.

Inheritance level 0 1 2 3 4 5 6 7 8 9 10

JavaScript 1513 1896 2002 2328 2333 2515 2724 2928 3260 3507 3670
TypeScript 1575 1944 2409 2755 3096 3614 4236 4606 4903 5186 5593

CP 1137 2184 2329 2465 2565 2708 2785 2873 2968 3069 3221

(b) Execution time (ms) for region0..10.

(c) Bar chart for five benchmarks.

0

1000

2000

3000

4000

5000

6000

0 1 2 3 4 5 6 7 8 9 10

JavaScript
TypeScript

CP

Ex
ec
ut
io
n
ti
m
e
(m

s)

Inheritance level

(d) Line chart for region0..10.

Fig. 31. Comparison between JavaScript code generated by the CP compiler and handwri!en code.

super-trait/-class) to see the trend of the performance penalty. In other words, region0 is monolithic
code with a single trait/class and no inheritance hierarchy. At level one, we introduce a slightly
more modular version of region with one level of inheritance: there is a super-trait/-class and a
sub-trait/-class. Higher levels simply introduce more inheritance layers. The results are shown in
Fig. 31b and Fig. 31d.

Besides CP and JavaScript, a TypeScript version is also included for this comparison. The source
code is simply the JavaScript version plus type annotations. We use the o!cial TypeScript compiler
to compile it to JavaScript and then use Node.js to execute the JavaScript code. The TypeScript
code has a di"erent performance pro#le from the JavaScript code because the TypeScript compiler
by default (as of the current version 5.4) desugars classes into prototypes. This is due to the default
compilation target being ECMAScript 3 [ECMA 1999] for best compatibility, which does not support
classes. Newer versions of Node.js (based on ECMAScript 6 [ECMA 2015] or above) natively support
classes, so the handwritten JavaScript directly uses classes. To sum up, the di"erence between
JavaScript and TypeScript in the benchmark is mainly classes versus prototypes.

Without inheritance (region0), the JavaScript code generated by the CP compiler is faster than the
handwritten JavaScript and TypeScript code. This is because the technique of nested anonymous
classes is neither idiomatic nor e!cient in JavaScript. In contrast, nested traits themselves do not
introduce extra runtime overhead in CP. However, when the desired method is one level up in
the inheritance hierarchy, the CP compiler generates around 2→ slower code, compared to the
monolithic version, because coercions are inserted for nested trait composition. For the monolithic

ACM Trans. Program. Lang. Syst.

Benchmarks

13

All optimizations work in practice, while
the most important one is the

coercion elimination for equivalent types.

CP is slightly slower than
handwritten JavaScript for

general computation.

CP has the most
smooth curve w.r.t.
inheritance level.

More in the Paper…

1. Complete examples for the type-safety issue in TypeScript

2. Compilation scheme for parametric polymorphism

3. Formalization of the compilation scheme with the Rocq prover

4. A prototype CP compiler targeting JavaScript

5. Detailed discussions on the implementation and more optimizations

[Artifact URL] https://github.com/yzyzsun/CP-next/tree/toplas
14

Thank you!

