
Separate Compilation for
Compositional Programming via
Extensible Records

Yaozhu Sun <yzsun@cs.hku.hk>
Supervised by Bruno C. d. S. Oliveira

The University of Hong Kong

evalLit = trait implements LitSig<Eval> => {
 (Lit n).eval = n
}

evalAdd = trait implements AddSig<Eval> => {
 (Add l r).eval = l.eval + r.eval
}

printLit = trait implements LitSig<Print> => {
 (Lit n).print = toString n
}

Expressions

Operations

printAdd = trait
 implements AddSig<Eval => Print> => {
 (Add l r).print = if l.eval == 0 then r.print
 else if r.eval == 0 then l.print
 else l.print ++ " + " ++ r.print
}

type LitSig<Exp> = {
 Lit : Int -> Exp
}

type AddSig<Exp> = {
 Add : Exp -> Exp
 -> Exp
}

type Eval = { eval : Int } type Print = { print : String }Dependencies

CP’s solution to the Expression Problem

‣ Challenge of feature modularity: modular type checking & separate compilation

CP’s solution:
nested trait composition
by the merge operator
(denoted by a comma)

Previous work on elaboration of intersection types:
compiling merges to nested pairs, e.g.
(evalLit, (printLit, (evalAdd, printAdd)))

‣ How to compile merged features?
Our compilation scheme:
compiling merges to type-indexed records, e.g.
{ LitSig<Eval> |=> evalLit; LitSig<Print> |=> printLit
; AddSig<Eval> |=> evalAdd; AddSig<Print> |=> printAdd }

dependency

printAdd

,
evalAdd

Add

+ eval
, Add

+ print
=printLitevalLit

Lit

+ eval
, Lit

+ print

merged

Lit

+ eval

+ print

Add

+ eval

+ print

Our type system guarantees that the merged terms have disjoint
types, so there must be no conflict between type indices.
LitSig<Eval> * LitSig<Print> * AddSig<Eval> * AddSig<Print>

‣Q1: Why can we compile this way?
i) Looking up a component by type indices is much faster than

doing that in nested pairs (linear time in the worst case).
ii) Type-indexed records require fewer coercions because

some source terms compile to equivalent records.

‣Q2: Why do we choose to compile this way?

Challenge 1: nested composition
Like family polymorphism, nested traits are recursively composed
in CP. To achieve this, subtyping is enhanced with distributivity
rules of records, functions or traits over intersection types.
{ Lit: I -> E } & { Lit: I -> P } <: { Lit: I -> E & P }

 { Lit = \n -> { eval = n } }
, { Lit = \n -> { print = toString n } }
: { Lit: Int -> Eval & Print }

Challenge 2: dynamic inheritance
Unlike traditional OOP, inheritance hierarchies are not statically
known in CP, so feature composition is delayed until runtime.
t2 (t1 : Trait<Feature>) = trait inherits t1 => { ... }

Challenge 3: parametric polymorphism
Record labels cannot be statically computed for polymorphic
types. First-class labels are needed to handle type instantiation.

‣ Challenges in compiling CP

The benchmarks show that the most important optimization is to eliminate
redundant coercions for subtyping between equivalent types.

i) top-like types are all equivalent (empty records)
ii) intersection types are equivalent up to permutation,

deduplication, and top-like type removal (records are
unordered and labels are unique)

‣ Identifying equivalent types

1

10

100

1000

fib fact seive nbody region chart fractal minipedia

Ex
ec
ut
io
n
ti
m
e
ra
ti
o

Compiler
Interpreter

w/o ProjOptim
w/o DPS

w/o TyEquiv
w/o CoElim

‣ Evaluating CP-specific compiler optimizations

CP compiler implementation targeting JavaScriptArtifact

