Separate C()m pi |ati()n f()l" Yaozhu Sun <yzsun@cs.hku.hk>
Supervised by Bruno C. d. S. Oliveira

Compositional Programming via
ExtenSible Records The University of Hong Kong

A
Expressions CP’s solution to the Expression Problem
type LitSig<Exp> = { evallLit = trait implements LitSig<Eval> = 1 printLit = trait implements LitSig<Print> = {
Lit : Int — Exp (Lit n).eval = n (Lit n).print = toString n
} } }
printAdd = trait
L. . implements AddSig<Eval = Print> = {
] = = = . . .
type AddSig<Exp> ! ev?lggdl r;r2$;11Tp}e2$2is+Aid2$§iEval> { (Add 1 r).print = if l.eval = 0 then r.print
Add : Exp — Exp | ' - ' else if r.eval = 0 then l.print
— EXp else l.print + " + " + r.print
}]
/Depe”de”des’ type Eval = { eval : Int } type Print = { print : String }
>
Operations
>~ Challenge of feature modularity: modular type checking & separate compilation
dependency ~ ~
;-------------------: merged
CP’s solution: |
4) () 4) a8)
nested trait composition evalLit printLit evalAdd printAdd a Lit A (Add\
by the merge operator ~ L) 4 P) fAdd\ [Add\ — s eval . eval
(denoted by a comma) , , , | - L
+ eval + print + eval + print + print + print
— — — — o —

> How to compile merged features? o
Our compilation scheme:

Previous work on elaboration of intersection types: compiling merges to type-indexed records, e.g.

compiling merges to nested pairs, e.g. { LitSig<Eval> k= evallit; LitSig<Print> k= printLit

:+ AddSig<Eval> = evalAdd; AddSig<Print> = printAdd }

(evalLit, (printLit, (evalAdd, printAdd)))

> Q1: Why can we compile this way? > Q2: Why do we choose to compile this way?
Our type system guarantees that the merged terms have disjoint i) Looking up a component by type indices is much faster than
types, so there must be no conflict between type indices. doing that in nested pairs (linear time in the worst case).
litSig<Eval> * LitSig<Print> % AddSig<Eval> * AddSig<Print> i) Type-indexed records require fewer coercions because

some source terms compile to equivalent records.

> " 1l . . .
Challenges in compiling CP > |dentifying equivalent types\9/
Challenge 1: nested composition i) top-like types are all equivalent (empty records)
Like family polymorphism, nested traits are recursively composed i) intersection types are equivalent up to permutation,
in CP. To achieve this, subtyping is enhanced with distributivity deduplication, and top-like type removal (records are
rules of records, functions or traits over intersection types. unordered and labels are unique)

tht: I > ErsiLlit: I»>Ph< iUt I=>E&PL , Fyaluating CP-specific compiler optimizations

{ Lit = \n > { eval = n } }
. . . 1000 E
, 1 Lit = \n = { print = toString n } } : Compler T /
. . i nterpreter
. { Lit: Int — Eval & Print } /o ProjOptim EXZ<] %
w/o DPS I
S W0E woTyENIST o
= = w/o CoElim —Z1 % %
Challenge 2: dynamic inheritance = ’< 2 5 . /
| . o | | | N g ‘. f ‘-
Unlike traditional OOP, inheritance hierarchies are not statically s § < 5 § 4
& k
<nown in CP, so feature composition is delayed until runtime. | R < b , f
t2 (t1 : Trait<Feature>) = trait inherits t1 = { ... } : 2@@ @:‘ % B § / d
fib fact seive nbody region chart fractal minipedia
Challenge 3: parametric polymorphism The benchmarks show that the most important optimization is to eliminate

redundant coercions for subtyping between equivalent types.

CP compiler implementation targeting JavaScript)

Record labels cannot be statically computed for polymorphic
types. First-class labels are needed to handle type instantiation.

